Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Bạc Hà

Ai giải giúp mình với!!

Tìm x.biết (X+1).(x+2).(x+3).(x+5).(x+7)+15=0

Lý Đỗ Thị
17 tháng 8 2017 lúc 15:13

:  1/ (x+1)(x+3)(x+5)(x+7) + 15 = [ (x+1)(x+7) ].[ (x+3)(x+5) ] + 15 

= (x² + 7x + x + 7).(x² + 5x + 3x + 15) + 15 

= (x² + 8x + 7).(x² + 8x + 15) + 15 

= (x² + 8x + 11 - 4)(x² + 8x + 11 + 4) + 15. Đặt x² + 8x + 11 = y (1) ta được. 

(t - 4)(t + 4) + 15 = t² - 16 + 15 = t² - 1 = (t+1)(t-1) (2). 

Thay (1) vào (2) ta được: đa thức trên được phân tích thành: 

(x² + 8x + 11 + 1)(x² + 8x + 11 - 1) = x² + 8x + 12)(x² + 8x + 10). 

Lưu ý: phương pháp này có tên là "Đặt ẩn phụ". 

2/ x^7 - x² - 1 = x^7 - x² - 1 + x - x = (x^7 - x) + (-x² + x - 1) 

= x(x^6 - 1) - (x² - x + 1) = x(x³ - 1)(x³ + 1) - (x² - x + 1) 

= (x^4 - x)(x + 1)(x² - x + 1) - (x² - x + 1) 

= (x² - x + 1).[ (x^4 - x)(x + 1) - 1 ] 

= (x² - x + 1).(x^5 + x^4 - x² - x - 1). 

3/ x^4 + 4y^4 = x^4 + 4y^4 + 4x²y² - 4x²y² 

= (x^4 + 4x²y² + 4y^4) - (2xy)² 

= (x² + 2y²)² - (2xy)² = [ (x² + 2y²) + (2xy) ].[ (x² + 2y²) - (2xy) ] 

= (x² + 2xy + 2y²).(x² - 2xy + 2y²) 

4/ x^5 + x + 1 = x^5 + x + 1 + x² - x² 

= (x^5 - x²) + (x² + x + 1) = x²(x³ - 1) + (x² + x + 1) 

= x²(x - 1)(x² + x + 1) + (x² + x + 1) = (x² + x + 1).[ x²(x - 1) + 1 ] 

= (x² + x + 1).(x³ - x² + 1). 

5/ x^5 + x - 1 = x^5 + x - 1 + x² - x² = (x^5 + x²) + (-x² + x - 1) 

= x²(x³ + 1) - (x² + x - 1) = x²(x + 1)(x² - x + 1) - (x² - x + 1) 

= (x² - x + 1).[ x²(x + 1) - 1 ] = (x² - x + 1).(x³ + x² - 1). 

6/ (x² + y² - z²)² - 4x²y² = (x² + y² - z²)² - (2xy)² 

= [ (x² + y² - z²) - 2xy ].[ (x² + y² - z²) + 2xy ] 

= [ x² + y² - z² - 2xy ].[ x² + y² - z² + 2xy ] 

= [ (x² - 2xy + y²) - z² ].[ (x² + 2xy + y²) - z² ] 

= [ (x - y)² - z² ].[ (x + y)² - z² ] = (x-y+z)(x-y-z)(x+y+z)(x+y-z). 

Mong bạn sẽ hiểu

Bạc Hà
17 tháng 8 2017 lúc 19:28

híc bài bạn cop mink làm đk hết rồi...


Các câu hỏi tương tự
Trần Đình Hoàng Quân
Xem chi tiết
Nguyễn Ngọc Bảo
Xem chi tiết
Lê Đình Quy
Xem chi tiết
huyền
Xem chi tiết
người bí ẩn
Xem chi tiết
hoàng ngọc lan
Xem chi tiết
Đào Thu Hà
Xem chi tiết
Thuy Ho
Xem chi tiết
ngọc hân
Xem chi tiết