a,Ta có : \(\frac{x}{x}=\frac{4y}{7}\) => \(1=\frac{4y}{7}\)=> \(2x=\frac{4y}{7}\)=> 14x = 4y => 7x = 2y => \(\frac{x}{2}=\frac{y}{7}\)=> \(\frac{2x}{4}=\frac{y}{7}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{2x}{4}=\frac{y}{7}=\frac{2x-y}{4-7}=\frac{3}{-3}=-1\)
=> \(\hept{\begin{cases}\frac{2x}{4}=-1\\\frac{y}{7}=-1\end{cases}}\Leftrightarrow\hept{\begin{cases}2x=-4\\y=-7\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-2\\y=-7\end{cases}}\)
b, \(\frac{x}{4}=\frac{y}{3}\)=> \(\frac{x^2}{16}=\frac{y^2}{9}\)
Áp dụng t/c dãy tỉ số bằng nhau ta có :
\(\frac{x^2}{16}=\frac{y^2}{9}=\frac{x^2-y^2}{16-9}=\frac{36}{7}\)
=> Từ đó suy ra x,y không thỏa mãn điều kiện
a. \(\frac{x}{x}=\frac{4y}{7}\)=> 4y = 7 => y = \(\frac{7}{4}\)
2x - y = 3 => 2x = \(\frac{19}{4}\) => x = \(\frac{19}{8}\)
b. Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{x}{4}=\frac{y}{3}=\frac{x^2-y^2}{4^2-3^2}=\frac{36}{7}\)
=> x,y \(\in\varnothing\)