\(\frac{7}{5}.\frac{15}{49}-\left(\frac{4}{5}+\frac{2}{3}\right).\frac{5}{11}\)
\(=\frac{3}{7}-\frac{22}{15}.\frac{5}{11}\)
\(=\frac{3}{7}.\frac{2}{3}=\frac{2}{7}\)
\(\frac{7}{5}.\frac{15}{49}-\left(\frac{4}{5}+\frac{2}{3}\right).\frac{5}{11}\)
\(=\frac{3}{7}-\frac{22}{15}.\frac{5}{11}\)
\(=\frac{3}{7}.\frac{2}{3}=\frac{2}{7}\)
Tìm x:
\(\frac{\left(13\frac{2}{9}-15\frac{2}{3}\right)\cdot\left(30^2-5^4\right)}{\left(18\frac{3}{7}-17\frac{1}{4}\right)\cdot\left(25-12\cdot5^2\right)}\cdot x=\frac{\frac{2}{11}+\frac{3}{13}+\frac{4}{15}+\frac{5}{17}}{4\frac{1}{11}+\frac{5}{13}+\frac{9}{15}+\frac{13}{17}}\)
Tính nhanh:
a,\(\frac{7}{13}\cdot\frac{7}{15}-\frac{5}{12}\cdot\frac{21}{39}+\frac{49}{91}\cdot\frac{8}{15}\)
b,\(\left(\frac{12}{199}+\frac{23}{200}-\frac{34}{201}\right)\cdot\left(\frac{1}{2}-\frac{1}{3}-\frac{1}{6}\right)\)
tính nhanh
a, \(\frac{-2}{5}\cdot\left(\frac{5}{17}-\frac{9}{15}\right)-\frac{2}{5}\cdot\frac{2}{17}+\frac{-2}{5}\)
b, \(\frac{1}{5}\cdot\left(\frac{4}{13}-\frac{9}{11}\right)+\frac{1}{3}\left(\frac{9}{13}-\frac{4}{22}\right)\)
c, \(\left(\frac{1}{2}+1\right)\cdot\left(\frac{1}{3}+1\right)\cdot\left(\frac{1}{4}+1\right)\cdot...\cdot\left(\frac{1}{99}+1\right)\)
d, \(\left(1-\frac{1}{2}\right)\cdot\left(1-\frac{1}{3}\right)\cdot\left(1-\frac{1}{4}\right)\cdot...\cdot\left(1-\frac{1}{100}\right)\)
Tìm x : \(\frac{6:\frac{3}{5}-1\frac{1}{16}\cdot\frac{6}{7}}{4\frac{1}{5}\cdot\frac{10}{11}+5\frac{2}{11}}\)\(-\frac{\left(\frac{3}{20}+\frac{1}{2}-\frac{1}{5}\right)\cdot\frac{12}{49}}{3\frac{1}{3}+\frac{2}{9}}\)
Thực hiện phép tính hợp lí nếu có thể:
a/ \(\frac{6}{7}+\frac{1}{7}\cdot\frac{2}{7}+\frac{1}{7}\cdot\frac{5}{7}\)
b/\(\frac{2}{3}\cdot\frac{5}{7}\cdot\frac{-3}{8}\cdot\frac{11}{5}\)
c/\(11\frac{4}{7}-\left(2\frac{3}{5}+5\frac{4}{7}\right)\)
d/\(\frac{3}{4}-\frac{3}{4}\cdot\left(\frac{2}{3}+1\right)\)
e/\(0.5\cdot1\frac{1}{3}\cdot75\%:\frac{2}{5}+\frac{3}{5}\)
f/\(\frac{6}{7}+\frac{5}{8}:5-\frac{3}{16}\cdot\left(-2\right)^2\)
g/\(1\frac{3}{8}+\left(\frac{-5}{6}+\frac{7}{12}\right):\frac{2}{3}\)
h/\(1\frac{1}{4}\cdot\frac{-3}{2}+50\%\cdot98\)
i/\(\left(2,09:1,1+4,5\right)\cdot\frac{5}{8}+4,32\)
Bài 4 :
a) Tính giá trị của biểu thức :
\(A=\left(\frac{1\frac{11}{31}\cdot4\frac{3}{7}-\left(15-6\frac{1}{3}\cdot\frac{2}{19}\right)}{4\frac{5}{6}+\frac{1}{6}\left(12-5\frac{1}{3}\right)}\cdot\left(-1\frac{14}{93}\right)\right)\cdot\frac{31}{50}\)
b) Chứng tỏ rằng : \(B=1-\frac{1}{2^2}-\frac{1}{3^2}-\frac{1}{3^2}-...-\frac{1}{2004^2}>\frac{1}{2004}\)
Bài 1 : tính
a) \(\frac{3}{2^2}\cdot\frac{8}{3^2}\cdot\frac{15}{4^2}\cdot...\cdot\frac{899}{30^2}\)
b) \(\frac{\left(\frac{3}{4}+\frac{3}{7}-\frac{3}{8}\right)}{\frac{5}{4}+\frac{5}{7}-\frac{5}{8}}\)
A = \(\left(\frac{1}{2}-\frac{7}{13}-\frac{1}{3}\right)\)\(+\left(\frac{-6}{13}+\frac{1}{2}+1\frac{1}{3}\right)\)
B = \(0,75+\frac{2}{5}+\left(\frac{1}{9}-1\frac{2}{5}+\frac{5}{4}\right)\)
C =\(\left(-1\frac{1}{2}:\frac{3}{4}\right)\cdot\left(-4\frac{1}{2}\right)-\frac{1}{4}\)
D = \(1\frac{1}{4}\cdot\left(-0,7\cdot\frac{5}{4}-\frac{7}{8}\cdot\frac{14}{20}\right)\)
a) \(\left(\frac{11}{4}\cdot\frac{-5}{9}-\frac{4}{9}\cdot\frac{11}{4}\right)\cdot\frac{8}{33}\)
b) \(\frac{-1}{4}\cdot\frac{152}{11}+\frac{68}{4}\cdot\frac{-1}{11}\)
c) \(\frac{-2}{3}\cdot\frac{4}{5}+\frac{2}{3}\cdot\frac{3}{5}\)
d) \(\left(\frac{1}{2}-1\right)\cdot\left(\frac{1}{3}-1\right)\cdot\left(\frac{1}{4}-1\right)\cdot....\cdot\left(\frac{1}{100}-1\right)\)
e) \(\frac{3}{2^2}\cdot\frac{8}{3^2}\cdot\frac{15}{4^2}\cdot...\cdot\frac{8^{99}}{30^2}\)