A < 1 <=> 53 . 72 + x < 52 . 73 + y
<=> 3816 + x < 3796 + y
=> 20 + x < y
=> x < y - 20 để A < 1 với x, y thuộc Z
A < 1 <=> 53 . 72 + x < 52 . 73 + y
<=> 3816 + x < 3796 + y
=> 20 + x < y
=> x < y - 20 để A < 1 với x, y thuộc Z
\(A=\frac{53\cdot72+x}{52\cdot73+y}\)
Tìm x, y thuộc Z với x < y- 20 để A < 1
1. Tìm x,y,z biết
a. 5x=-10y=6z với x*y*z=-30000
b. 2x=3y; 5y=4z với 3x+4y-5z=-18
2. Cho A=\(\frac{9}{\sqrt{x}-2}\)
Tìm x thuộc Z để A thuộc Z
Bài 1 : Cho biểu thức A = \(\frac{3x-1}{x-1}\)và B = \(\frac{2x^2+x-1}{x+2}\)
a ) Tìm x thuộc Z để A thuộc Z
b) Tìm x thuộc Z để B thuộc Z
Bài 2 : Tìm x ,y biết :
a ) \(\frac{1}{9}.27^x=3^x\)
b ) \(\left(x-\frac{1}{2}\right)^2+\left(y+\frac{1}{2}\right)^2=0\)
c ) \(x^2=2x\)
Mọi người làm giúp mình nhé , nhớ làm đầy đủ phân tích , kết quả phân tích , kết quả cuối .
a) Tìm số nguyên a để \(\frac{a^2+a+3}{a+1}\) là số nguyên
b) Tìm số nguyên x,y sao cho x - 2xy +y = 0. Cho \(\frac{x}{y+z+t}=\frac{y}{z+t+x}=\frac{z}{t+x+y}=\frac{t}{x+y+z}\) .
CMR biểu thức sau có giá trị nguyên \(P=\frac{x+y}{z+t}+\frac{y+z}{t+x}+\frac{z+t}{x+y}+\frac{t+x}{y+z}\)
1.Cho
B= 2|x|+3 \ 3|x|-1 ( x thuộc Z)
a: tìm x thuộc z để B đạt GTLN
b: tìm x thuộc z để B có giá trị là số tự nhiên
2.Cho x-y=2 ( x,y thuộc Z)
Tìm GTNN
C= |2x+1| + |2y+1|
Cho \(y=\frac{x+2}{2x+1}\) Tìm x thuộc Z để y thuộc Z
Bài 1: a) Tìm x biết : 2019 |x - 2019| + ( x - 2019 )2 = 2018 |2019 - x|
b) TÌm x thuộc Z và y thuộc Z* thỏa mãn : \(2x+\frac{1}{7}=\frac{1}{y}\)
Tìm x thuộc Q, biết :
a/\(\frac{x-3}{2}<0\)
b/\(\frac{x-1}{x+1}<0\)
c/ \(\frac{x+3}{x}<0\)
Tìm x,y,z thuộc Q,biết :
x(x+y+z)=-5; y(x+y+z)=9: z(x+y+z)=5
A= 2x+y-1.tìm giá trị của x,y để A=0 ( x,y thuộc Z )