\(3\frac{2}{5}+4\frac{3}{7}-\frac{1}{4}+\frac{44}{77}-2\frac{2}{5}-0,75\)
\(A=\frac{1}{1\times300}+\frac{1}{2\times301}+...+\frac{1}{101\times400}\)
\(B=\frac{1}{1\times102}+\frac{1}{2\times103}+....+\frac{1}{298\times399}+\frac{1}{299\times400}\)
\(Tính:\frac{A}{B}\)
Giups mk voi mk can gap
\(\frac{3}{1x2}+\frac{3}{2x3}+\frac{3}{3x4}+\frac{3}{4x5}+\frac{3}{5x6}+....+\frac{3}{9x10}+\frac{77}{2x9}+\frac{77}{9x16}+\frac{77}{16x23}+...+\frac{77}{93x100}\)
\(\frac{4}{3x6}+\frac{4}{6x9}+\frac{4}{9x12}+\frac{4}{12x15}\) \(\frac{7}{1x5}+\frac{7}{5x9}+\frac{7}{9x13}+\frac{7}{13x17}+\frac{7}{17x21}\)
\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+...+\frac{1}{110}\) \(\frac{1}{10}+\frac{1}{40}+\frac{1}{88}+\frac{1}{154}+\frac{1}{138}+\frac{1}{340}\)
\(A=\left(2017-\frac{1}{4}-\frac{2}{5}-\frac{3}{6}-\frac{4}{7}-...-\frac{2017}{2020}\right):\left(\frac{1}{20}+\frac{1}{25}+\frac{1}{30}+...+\frac{1}{10100}\right)\)
Tính giúp mình với !
tính nhanh:
B=\(\frac{3+33+333+3333+33333}{4+44+444+4444+44444}\)
A=\(\frac{1}{3}+\frac{1}{6}+\frac{1}{12}+\frac{1}{24}+\frac{1}{48}+\frac{1}{96}+\frac{1}{192}\)
\(\frac{1995}{1997}.\frac{1990}{1993}.\frac{1997}{1994}.\frac{1993}{1995}.\frac{997}{995}\)
1/Tính nhanh:
A= \(\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+\frac{1}{99}+...+\frac{1}{9999}\)
2/Tính tổng:
A=\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}\)
So sánh \(A\)với\(13\),biết rằng:
\(A=\frac{13}{15}+\frac{7}{5}+\frac{3}{4}+\frac{1}{5}+\frac{1}{7}+\frac{19}{20}+\frac{5}{4}+\frac{1}{3}+\frac{1}{6}+\frac{1}{13}+\frac{17}{23}+\frac{9}{8}+\frac{2}{5}+\frac{1}{7}+\frac{1}{25}+\frac{3}{2}+\frac{1}{8}+\frac{1}{19}+\frac{1}{9}+\frac{1}{97}\)
Tính hợp lý :
a) A = \(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+....+\frac{1}{16384}\)
b) B = \(\frac{1}{2}+\frac{1}{3}+\frac{1}{6}+\frac{1}{12}+\frac{1}{15}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{63}\)
\(A=\left(2017-\frac{1}{4}-\frac{2}{5}-\frac{3}{6}-...-\frac{2017}{2020}\right):\left(\frac{1}{20}+\frac{1}{25}+\frac{1}{30}+\frac{1}{35}+...+\frac{1}{10100}\right)\)