A=1/12+1/22+.....+1/502
A=1/1.2+1/2.3+...+1/49.50
A=1-1/2+1/2-1/3+....+1/49-1/50
A=1-1/50=49/50
A=1/12+1/22+.....+1/502
A=1/1.2+1/2.3+...+1/49.50
A=1-1/2+1/2-1/3+....+1/49-1/50
A=1-1/50=49/50
A= \(\frac{3}{4}+\frac{8}{9}+\frac{15}{16}+....+\frac{2499}{2500}\)
A=\(1-\frac{1}{4}+1-\frac{1}{9}+1-\frac{1}{16}+....+1-\frac{1}{2500}\)
A=\(\left(1+1+1+.....+1\right)-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{50^2}\right)\)
A=\(49-\)\(\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{50^2}\right)\)
do \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{50^2}\)>0 nên 49<0
bài trên iu cầu CMR A < 49 thì mk lm đúng chưa ạ. Đây là đề thi quận mk đó ạ
CMR \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{50^2}< \frac{4}{9},A>\frac{1}{4}\)
Cho A=\(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{50^2}\) Chứng minh A<2
A=\(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+.....+\frac{1}{50^2}\)
Chứng minh A<2
CHO \(A=\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+....+\frac{1}{50^2}.\)CHỨNG MINH A<2
Cho A= \(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{50^2}\), Chwngs minh A<2
\(A=\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+....+\frac{1}{50^2}\)
Cho :
\(A=\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{50^2}\)
Chứng minh A < 2
Cho:
A=\(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{50^2}.Chứngminha< 2\)