A)\(CMR:\frac{a+2c}{b+2d}\)\(=\frac{3a+c}{3b+d}\)
B)\(CMR:\frac{a-c}{a+3c}=\frac{b-d}{b+3d}\)
A)\(CMR:\frac{a+2c}{b+2d}\)\(=\frac{3a+c}{3b+d}\)
B)\(CMR:\frac{a-c}{a+3c}=\frac{b-d}{b+3d}\)
Cho tỉ lệ thức: \(\frac{a}{b}=\frac{c}{d}\)
CMR: \(\frac{3a+2c}{3b+2d}=\frac{-5a+3c}{-5b+3d}\)
Cko \(\frac{a}{b}=\frac{c}{d}\). CMR:
\(\frac{3a+2c}{3b+2d}=\frac{-5a+3c}{-5b+3d}\)
Khó k nhỉ???
\(Cho\) \(\frac{a}{b}=\frac{c}{d}\)
\(CMR:\)\(a,\frac{5a-3b}{3a+2b}=\frac{5c-3d}{3c+2d}\)
\(b,\frac{2a+b}{a-2b}=\frac{2c+d}{c-2d}\)
CMR a=b=c=d
\(\frac{a}{3b}=\frac{b}{3c}=\frac{c}{3d}=\frac{d}{3a}\)
và a+b+c+d khác 0
Cho \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{a}\) \(\left(a,b,c,d\ne0;a+b+c+d\ne0\right)\)
Tính: \(M=\frac{3a-2b}{c+d}+\frac{3b-2c}{d+a}+\frac{3c-2d}{a+b}+\frac{3d-2a}{b+c}\)
cho \(\frac{a}{b}=\frac{c}{d}\). Chứng minh rằng \(\frac{3a+2c}{3b+2d}=\frac{-5b+3c}{-5d+3d}\)
Cho a , b ,c ,d thỏa mãn : \(\frac{a}{a+2b}=\frac{c}{c+2d}\). Tính \(\frac{a^2d^2-4b^2c^2}{abcd}\)
Cho a ,b ,c , d thỏa mãn : \(\frac{2a+3c}{2b+3d}=\frac{3a-4c}{3b-4d}\).. Tính \(\frac{4a^3d^3-b^3c^3}{4b^3c^3-a^3d^3}\)