Để chứng minh \(\frac{12n+1}{30n+2}\) là phân số tối giản thì cân chứng tỏ 12n + 1 và 30n + 2 nguyên tố cùng nhau
Gọi ƯCLN ( 12n + 1 ; 30n + 2 ) = d ( \(d\in n\) )
\(\Rightarrow\) 12n + 1 chia hết cho d \(\Rightarrow\) 5 ( 12n + 1 ) chia hết cho d \(\Rightarrow\) 60n + 5 chia hết cho d
30n + 2 chia hết cho d \(\Rightarrow\) 2 ( 30n + 2 ) chia hết cho d \(\Rightarrow\) 60n + 4 chia hết cho d
\(\Rightarrow\) ( 60n + 5 ) - ( 60n + 4 ) chia hết cho d
\(\Rightarrow\) 1 chia hết cho d
\(\Rightarrow d\inƯ\left(1\right)=\left(1\right)\)
\(\Rightarrow\) d = 1
\(\Rightarrow\) ƯCLN ( 12n + 1; 30n + 2 ) = 1
Vậy \(\frac{12n+1}{30n+2}\) là phân số tối giản
Để chứng minh 12n+1/30n+2 là phân số tối giản thì cần chứng tỏ 12n+1 và 30n+2 nguyên tố cùng nhau
Gọi ƯCLN(12n+1,30n+2)=d (d∈N)
=> 12n+1 chia hết cho d => 5(12n+1) chia hết cho d => 60n+5 chia hết cho d
30n+2 chia hết cho d => 2(30n+2) chia hết cho d => 60n+4 chia hết cho d
=> (60n+5)-(60n+4) chia hết cho d
=> 1 chia hết cho d
=> d∈Ư(1)={1}
=> d=1
=> ƯCLN(12n+1,30n+2)=1
Vậy 12n+1/30n+2 là phân số tối giản