Ta có:
abcd = 1000a + 100b + 10c + d = 1000a + 96b + 4b + 8c + 2c + d = (1000a + 96b + 8c) + (d + 2c + 4b)
Mà d + 2c + 4b chia hết cho 8 theo đề bài
Và 1000a + 96b + 8c cũng chia hết cho 8
=> abcd chia hết cho 8
Ta có:
abcd = 1000a + 100b + 10c + d = 1000a + 96b + 4b + 8c + 2c + d = (1000a + 96b + 8c) + (d + 2c + 4b)
Mà d + 2c + 4b chia hết cho 8 theo đề bài
Và 1000a + 96b + 8c cũng chia hết cho 8
=> abcd chia hết cho 8
a, Cho p và p + 4 là các số nguyên tố(p>3). Chứng minh rằng p+8 là hợp số .
b, Chứng minh rằng nếu (d+2c+4b) chia hết cho 8 thì abcd thì chia hết cho 8
a,cho p và p+4 là các số nguyên tố (p>3).Chứng minh rằng p+8 là hợp số.
b,Chứng minh rằng :nếu (d+2c+4b)chia hết cho 8 thì abcd chia hết cho 8
GIÚP MÌNH NHA
cho p và p+4 là các số nguyên tố (p>3) Chứng minh rằng p+8 là hợp số .
b, C/m nếu (d+2c+4b) chia hết cho 8 thì abcd chia hết cho 8
a,Cho p và p + 4 là các số nguyên tố (p< 3).Chứng minh rằng p + 8 là hợp số.
b,Chứng minh rằng: nếu (d+2c+4b) chia hết cho 8 thì abcd chia hết cho 8
làm thành bài giải
a) Cho p và p+4 là các số nguyên tố (p>3). Chứng minh rằng p+8 là hợp số
b) Chứng minh rằng: nếu ( d+2c+4b0 chia hết cho 8 thì abcd chia hết cho 8
Nếu được thì ác bạn giúp mình nha >.< Ai nhanh và đúng mình like cho nhé.
Chứng tỏ rằng ;
a, Số tự nhiên có dạng aaaaaa luôn chia hết cho 1001
b, ( abc - cba ) chia hết cho 99
c, Nếu ( d + 2c ) chia hết cho 4 thì abcd chia hết cho 4
d, Nếu ( d + 2c + 4b ) chia hết cho 8 thì abcd chia hết cho 8
a) Cho p và p+4 là các số nguyên tố (p>3). Chứng minh rằng p+8 là hợp số
b) Chứng minh rằng : nếu (d+2c+4b)\(⋮\)8 thì abcd\(⋮\)8
Cho mình hỏi 2 ý cuối nha :
Bài 1 : Chứng tỏ rằng :
a, Nếu ( d + 2c ) chia hết cho 4 thì abcd chia hết cho 4
b, Nếu ( d + 2c + 4b ) chia hết cho 8 thì abcd chia hết cho 8
*Ai đúng mình like cho*
Chứng minh rằng nếu d+2c+4b chia hết cho 8 thì abcd chia hết cho 8