Cho a,b,c là các số thực thỏa mãn \(abc=1\). CMR:
\(\frac{a^3}{\left(1+b\right)\left(1+c\right)}+\frac{b^3}{\left(1+c\right)\left(1+a\right)}+\frac{c^3}{\left(1+a\right)\left(1+b\right)}\ge\frac{3}{4}\)
Cho a, b, c là các số thực thỏa mãn điều kiện \(abc=1\). CMR:
\(\frac{a^3}{\left(1+b\right)\left(1+c\right)}+\frac{b^3}{\left(1+c\right)\left(1+a\right)}+\frac{c^3}{\left(1+a\right)\left(1+b\right)}\ge\frac{3}{4}\)
Cho a,b,c dương thõa mãn abc=1
CMR \(\frac{a}{\left(a+1\right)\left(b+1\right)}+\frac{b}{\left(b+1\right)\left(c+1\right)}+\frac{c}{\left(c+1\right)\left(a+1\right)}\ge\frac{3}{4}\)
Cho a,b,c dương thõa mãn abc=1
CMR \(\frac{a}{\left(a+1\right)\left(b+1\right)}+\frac{b}{\left(b+1\right)\left(c+1\right)}+\frac{c}{\left(c+1\right)\left(a+1\right)}\ge\frac{3}{4}\)
Cho a,b,c dương thõa mãn abc=1
CMR \(\frac{a}{\left(a+1\right)\left(b+1\right)}+\frac{b}{\left(b+1\right)\left(c+1\right)}+\frac{c}{\left(c+1\right)\left(a+1\right)}\ge\frac{3}{4}\)
Cho a,b,c là các số thực dương thỏa mãn abc=1. Chứng minh:
\(\frac{a}{\left(a+1\right)\left(b+1\right)}+\frac{b}{\left(b+1\right)\left(c+1\right)}+\frac{c}{\left(c+1\right)\left(a+1\right)}\ge\frac{3}{4}\)
cho a,b,c là các số thực dương thỏa mãn abc=1. Chứng minh rằng \(\frac{a}{\left(a+1\right)\left(b+1\right)}+\frac{b}{\left(b+1\right)\left(c+1\right)}\frac{c}{\left(c+1\right)\left(a+1\right)}\ge\frac{3}{4}\)
Với a,b,c > 0 thỏa mãn abc = 1 . CMR:
\(\frac{1}{a^2\left(b+c\right)}+\frac{1}{b^2\left(c+a\right)}+\frac{1}{c^2\left(a+b\right)}\ge\frac{3}{2}\)
Cho 3 số thực dương a,b,c thỏa mãn abc=1. Chứng minh rằng:
\(\frac{a^3}{\left(1+b\right)\left(1+c\right)}+\frac{b^3}{\left(1+a\right)\left(1+c\right)}+\frac{c^3}{\left(1+a\right)\left(1+b\right)}\ge\frac{3}{4}\)