Cho a,b,c là các số nguyên tố thoả mãn: ab + 1 = c. CMR: a2+ c hoặc b2+ c là số chính phương
Xét các số nguyên dương a, b, c thỏa mãn a2 + ab - bc là số chính phương và a + b + c là số nguyên tố. Chứng minh rằng ac là số chính phương
a,b là các số nguyên dương thoả mãn \(a^2+4ab-8b^2-4b+1=0\)
CM: 2b-a là số chính phương
Cho các số nguyên dương a,b thỏa mãn ab+1 là số chính phương. Chứng minh rằng tồn tại số nguyên dương c sao cho ac+1 và bc+1 cùng là số chính phương
Cho các số nguyên dương a, b, c thỏa mãn (a, b, c) = 1 và 1/a + 1/b = 1/c. Chứng minh rằng abc là số chính phương.
Cho các số nguyên dương a;b;c đôi một nguyên tố cùng nhau, thỏa mãn: (a+b)c=ab.
Xét tổng M=a+b có phải là số chính phương không ? Vì sao?
1..Chứng minh tổng 3 số chính phương liên tiếp không phải là số chính phương
2..Choa,b,c thuộc z thoả mãn 1/a +1/b +1/c = 1/a+b+c .Chứng mih ( 1+a^2 )( 1+b^2)(1+c^2) là 1 số chính phươg
Cho a,b,c là các số nguyên dương thỏa mãn điều kiện \(\sqrt{a}+\sqrt{b}=\sqrt{c}\). CMR nếu a,b là 2 số nguyên tố cùng nhau thì a,b,c đều là các số chính phương
Cho a,b,c,d là các số nguyên dương đôi một phân biệt thỏa mãn a+b=c+d=p ( p là số nguyên tố) Chứng minh tích abcd không là số chính phương