Given the point C on the segment AB such that the ratio of AC to CB is 3:7. Find the length of BC if the length of AB is 30 cm.
Answer: The length of BC is ...... cm
1. Two bisector BD and CE of the triangle ABC intersect at O. Suppose that BD.CE = 2BO.OC . Denote by H the point in BC such that .\(OH⊥BC\) . Prove that AB.AC = 2HB.HC
2. Given a trapezoid ABCD with the based edges BC=3cm , DA=6cm ( AD//BC ). Then the length of the line EF ( \(E\in AB,F\in CD\) and EF // AD ) through the intersection point M of AC and BD is ............... ?
3. Let ABC be an equilateral triangle and a point M inside the triangle such that \(MA^2=MB^2+MC^2\) . Draw an equilateral triangle ACD where \(D\ne B\) . Let the point N inside \(\Delta ACD\) such that AMN is an equilateral triangle. Determine \(\widehat{BMC}\) ?
4. Given an isosceles triangle ABC at A. Draw ray Cx being perpendicular to CA, BE perpendicular to Cx \(\left(E\in Cx\right)\) . Let M be the midpoint of BE, and D be the intersection point of AM and Cx. Prove that \(BD⊥BC\)
In a triangle of area 100cm2 , the ratio between the length of one side and the corresponding height is 1:2.
What is the length of the height, in m?
Answer: The height is...m.
(write your answer by decimal in simplest form)
Given a square with the length of one side is 8 cm and a isosceles triangle with the length of its base is 12 cm. If the area of the square is equal to the area of the isosceles triangle then what is the length of the height of the isosceles triangle, in cm?
given isosceles trapezoid ABCD (AB//CD), AC is perpendicular to BD and the length of the height of the ABCD is 7 cm. What is the area of the isosceles trapezoid ABCD?
Give the triangle ABC and the bisector BD, AB = 5cm, CB = 7cm. If the length of AD is 1cm less than the length of CD then the length of AC is ....... cm.
Given the right triangle ABC (A^ = 90o), BD is the bisector of the angle at B ( D of AC ). If AD = 6cm and AB = 12cm then the area of the right triangle ABC is ...... cm2.
Given the right triangle ABC (A^ = 90o), BD is the bisector of the angle at B ( D of AC ). If AD = 6cm and AB = 12cm then the area of the right triangle ABC is ...... cm2.
Given the right triangle ABC (A^ = 90o), BD is the bisector of the angle at B ( D of AC ). If AD = 6cm and AB = 12cm then the area of the right triangle ABC is ...... cm2.