Cho ba số thực dương a,b,c . Chứng minh
\(\frac{2+6a+3b+6\sqrt{2bc}}{2a+b+2\sqrt{2bc}}\ge\frac{16}{\sqrt{2b^2+2\left(a+c\right)^2}+3}\)
Cho a, b ,c là các số thực dương. CMR: (a+b)2+\(\frac{a+b}{2}\)\(\ge2a\sqrt{b}+2b\sqrt{a}\)
a.Cho a=\(\dfrac{1-\sqrt{2}}{2}\). tính giá trị của biểu thức \(\sqrt{16a^8-51a}\)
b.cho a,b là các số thực dương
cmr \(\left(a+b\right)^2+\dfrac{a+b}{2}\ge2a\sqrt{b}+2b\sqrt{a}\)
Cho ba số thực dương a, b, c. Chứng minh rằng:
\(\sqrt{\left(a^2b+b^2c+c^2a\right)\left(ab^2+bc^2+ca^2\right)}\ge abc+\sqrt[3]{\left(a^3+abc\right)\left(b^3+abc\right)\left(c^3+abc\right)}\)
3) Cho các số dương a,b,c thỏa mãn: \(b\ne c\), \(\sqrt{a}+\sqrt{b}\ne\sqrt{c}\) và \(a+b=\left(\sqrt{a}+\sqrt{b}-\sqrt{c}\right)^2\).
Chứng minh rằng :\(\frac{a+\left(\sqrt{a}-\sqrt{c}\right)^2}{b+\left(\sqrt{b}-\sqrt{c}\right)^2}=\frac{\sqrt{a}-\sqrt{c}}{\sqrt{b}-\sqrt{c}}\)
Cho 3 số dương a,b , c thoả mãn \(b\ne c,\sqrt{a}+\sqrt{b}\ne\sqrt{c}v̀aa+b=\left(\sqrt{a}+\sqrt{b}-\sqrt{c}\right)^2\)
Chứng minh rằng; \(\frac{a+\left(\sqrt{a}-\sqrt{c}\right)^2}{b+\left(\sqrt{b}-\sqrt{c}\right)^2}=\frac{\sqrt{a}-\sqrt{c}}{\sqrt{b}-\sqrt{c}}\)
Cho 3 số thực dương a,b,c thoả mãn điều kiện:
\(\left\{{}\begin{matrix}a+b+c=2\\a^2+b^2+c^2=2\end{matrix}\right.\)
Chứng minh rằng:
\(a\sqrt{\frac{\left(1+b^2\right)\left(1+c^2\right)}{1+a^2}}+b\sqrt{\frac{\left(1+a^2\right)\left(1+c^2\right)}{1+b^2}}+c\sqrt{\frac{\left(1+a^2\right)\left(1+b^2\right)}{1+c^2}}\)
Cho a, b, c > 0 thoả mãn: a + b + c = \(\sqrt{a}+\sqrt{b}+\sqrt{c}\) = 2. Chứng minh: \(\frac{\sqrt{a}}{a+1}+\frac{\sqrt{b}}{b+1}+\frac{\sqrt{c}}{c+1}=\frac{2}{\sqrt{\left(1+a\right)\left(1+b\left(1+c\right)\right)}}\)
Cho a, b, c > 0 thoả mãn a + b + c = \(\sqrt{a}+\sqrt{b}+\sqrt{c}\) = 2. Chứng minh: \(\frac{\sqrt{a}}{a+1}+\frac{\sqrt{b}}{b+1}+\frac{\sqrt{c}}{c+1}=\frac{2}{\sqrt{\left(a+1\right)\left(b+1\right)\left(c+1\right)}}\)