(a+b)^2 = a^2+2ab+b^2
(a-b)^2 = a^2-2ab+b^2
HT
\(\left(a+b\right)^2=\left(a-b\right)^2+4ab\)
Khai triễn vế phải:
\(\left(a-b\right)^2+4ab\)
\(=a^2-2ab+b^2+4ab\)
\(=a^2+2ab+b^2\)
\(=\left(a+b\right)^2\)
\(\Rightarrow\left(a+b\right)^2=\left(a+b\right)^2-4ab\)
\(\left(a-b\right)^2=\left(a+b\right)^2-4ab\)
Khai triễng vế phải:
\(\left(a+b\right)^2-4ab\)
\(=a^2+2ab+b^2-4ab\)
\(=a^2-2ab+b^2\)
\(=\left(a-b\right)^2\)
\(\Rightarrow\left(a-b\right)^2=\left(a+b\right)^2-4ab\)