\(\overline{ab}\times99=\overline{aabb}\)
\(=>\left(10\times a+b\right)\times99=a\times100\times11+11\times b\)
\(=>10\times a\times99+b\times99=a\times1100+11\times b\)
\(=>990a+99b=1100a+11b\)
\(=>110a=88b\)
\(=>5a=4b\)
Vậy \(a=4;b=5\)
Đúng 2
Bình luận (0)