a)\(A=3+3^2+3^3+3^4+...+3^{49}+3^{50}\)
\(A=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{49}+3^{50}\right)\)
\(A=3.\left(1+3\right)+3^3.\left(1+3\right)+...+3^{49}.\left(1+3\right)\)
\(A=3.4+3^3.4+...+3^{49}.4\)
\(A=4.\left(3+3^3+...+3^{49}\right)⋮4\)
\(\Rightarrow A=3+3^2+3^3+3^4+...+3^{50}⋮4\left(đpcm\right)\)
b) \(A=3+3^2+3^3+3^4+...+3^{49}+3^{50}\)
\(A=\left(3+3^2+3^3+3^4\right)+...+\left(3^{47}+3^{48}+3^{49}+3^{50}\right)\)
\(A=120+...+3^{46}.\left(3+3^2+3^3+3^4\right)\)
\(A=120+...+3^{46}.120\)
\(A=120.\left(1+...+3^{46}\right)⋮10\)
\(\Rightarrow A=3+3^2+3^3+3^4+...+3^{49}+3^{50}⋮10\left(đpcm\right)\)