A = 2 ^ 2 + 2 ^ 3 + 2 ^ 4 + .... + 2 ^ 2016
2A = 2 ^ 3 + 2 ^ 4 + 2 ^ 5 + .... + 2 ^ 2017
2A - A = ( 2 ^ 3 + 2 ^ 4 + 2 ^ 5 + .... + 2 ^ 2017 )
- ( 2 ^ 2 + 2 ^ 3 + 2 ^ 4 + .... + 2 ^ 2016 )
A = 2 ^ 2017 - 2 ^ 2
A = 2 ^ 2 + 2 ^ 3 + 2 ^ 4 + .... + 2 ^ 2016
2A = 2 ^ 3 + 2 ^ 4 + 2 ^ 5 + .... + 2 ^ 2017
2A - A = ( 2 ^ 3 + 2 ^ 4 + 2 ^ 5 + .... + 2 ^ 2017 )
- ( 2 ^ 2 + 2 ^ 3 + 2 ^ 4 + .... + 2 ^ 2016 )
A = 2 ^ 2017 - 2 ^ 2
Chứng minh rằng A=\(\left(4+4^2+4^3+...+4^{2016}\right)⋮21;420\)
A=\(\left(2016+2016^2+2016^3+...+2016^{2016}\right)⋮2017\)
A = (1 - 1/(2*2)) * (1 - 1/(3*3)) * (1 - 1/(4*4)) ….* (1 - 1/(2016*2016)) .So sánh A với 1/2
so sánh A với 1/2 biết A = ( 1-1/2*2)* (1-1/3*3) * ( 1-1/4*4)* ...* ( 1-1/2016*2016)
cho A = 1/2^2 + 1/3^2 + 1/4^2 + ... + 1/ 2015^2 + 1/2016^2. Chứng minh rằng: A < 2015/2016
A = 1/2 + 1/3 +1/4 +.....+1/2016 + 1/2017 B = 2016/1 + 2015/2 + ......+ 2/2015 + 1/2016 . Tính B/A
a, (13+ 23 + 33 + 43) - (12 + 22 + 32 + 42 + 52)
b, (4 -1) * (22 +1) * (24 -1)
c, 3 + 122016 - 32016 * 42016
Câu 1
a) Chứng tỏ rằng 1/3 - 1/3^2 + 1/3^3 - 1/3^4 + 1/3^5 - 1/3^6 < 1/4
b) Cho A= 2015^2016 + 2016^2015 x 2015 và B= 1 + 2^2 + 3^2 + ......+2016^2. Tính AB có chia hết cho 5 không? Vì sao?
A= ( 1/2017+ 2/2016+ 3/2015+...+ 2015/3+ 2016/2+ 2017) : ( 1/2+1/3+1/4+...+1/2017+1/2018)
Tính A= \(\frac{1}{4}+\frac{2}{4^2}+\frac{3}{4^3}+...+\frac{2016}{4^{2016}}\)