\(A=\frac{1}{\sqrt{5+2}}-\sqrt{9+4\sqrt{5}}\)
\(A=\frac{1}{\sqrt{7}}-3+8,94427191\)
\(A=0,377964473-11,94427191\)
\(A=-11,56630744\)
Ko chắc đâu nha
\(A=1\sqrt{5}+2-\sqrt{9}+4\sqrt{5}\)
\(A=\sqrt{5}+2-3+4\sqrt{5}\)
\(A=5\sqrt{5}-1\)
Vậy \(A=5\sqrt{5}-1\)
\(A=\frac{1}{\sqrt{5}+2}-\sqrt{9}+4\sqrt{5}\)
\(A=\frac{1}{\sqrt{5}+2}-3+4\sqrt{5}\)
\(A=\frac{1}{\sqrt{5}+2}-\frac{3\left(\sqrt{5}+2\right)}{\sqrt{5}+2}+\frac{4\sqrt{5}\left(\sqrt{5}+2\right)}{\sqrt{5}+2}\)
\(A=\frac{1-3\sqrt{5}-6+20+8\sqrt{5}}{\sqrt{5}+2}\)
\(A=\frac{15+5\sqrt{5}}{\sqrt{5}+2}\)