Ta có:
A = 1 + 2 + 22 + ... + 22008
=> 2A = 2 + 22 + ... + 22009
=> 2A - A = 22009 - 1
=> A = 22008 - 1 < 22009 = B
Vậy B> A
2A=2+2^2+...+2^2009
2A-A=(2+2^2+...+2^2009)-(1+2+...+2^2008)
A=2^2009-1
=>A<B
\(A=1+2+2^2+2^3+......+2^{2008}\)
\(\Rightarrow2A=2+2^2+2^3+...+2^{2009}\)
\(\Rightarrow2A-A=\left(2+2^2+2^3+.....+2^{2009}\right)-\left(1+2+2^2+2^3+....+2^{2008}\right)\)
\(\Rightarrow A=2^{2009}-1\)
Do \(2^{2009}-1< 2^{2009}\Rightarrow A< B\)
\(A=1+2+2^2+2^3+...+2^{2007}+2^{2008}\)
\(\Leftrightarrow2A=2+2^2+2^3+...+2^{2008}+2^{2009}\)
\(\Leftrightarrow2A-A=\left(2+2^2+2^3+...+2^{2009}\right)-\left(1+2+2^2+2^3+...+2^{2008}\right)\)
\(\Leftrightarrow2A-A=2+2^2+2^3+...+2^{2009}-1-2-2^2-2^3-...-2^{2008}\)
\(\Leftrightarrow A=2^{2009}-1\)
\(B=2^{2009}\)
Vậy \(B-A=2^{2009}-\left(2^{2009}-1\right)\)
\(B-A=2^{2009}-2^{2009}+1\)
\(B-A=1\)