\(\Rightarrow A=\left(1-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{4}\right)+\left(\frac{1}{4}-\frac{1}{8}\right)+\left(\frac{1}{8}-\frac{1}{16}\right)+\left(\frac{1}{16}-\frac{1}{32}\right)\)
\(=1-\frac{1}{32}\)
\(=\frac{31}{32}\)
Vậy...
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{8}+\frac{1}{8}-\frac{1}{16}+\frac{1}{16}-\frac{1}{32}\)
\(A=1-\frac{1}{32}\)
\(A=\frac{31}{32}\)