\(A=\frac{1}{1.4}+\frac{1}{4.7}+.....+\frac{1}{97.100}\)
\(3A=\frac{3}{1.4}+\frac{3}{4.7}+......+\frac{3}{97.100}\)
\(3A=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+.......+\frac{1}{97}-\frac{1}{100}\)
\(3A=1-\frac{1}{100}\)
\(3A=\frac{99}{100}\)
\(A=\frac{99}{100}:3\)
\(A=\frac{33}{100}\)
A=1/1x4+1/4x7+.....+1/97x100
A=1x3/1x4x3+1x3/4x7x3+....+1x3/97x100x3
A=1/3x(3/1x4+3/4x7+...+3/97x100)
A=1/3x(1-1/4+1/4-1/7+.....+1/97-1/100)
A=1/3x(1-1/100)
A=1/3x99/100
A=33/100