Tinh
(1 + 1999/1)(1 + 1999/2)......(1 + 1999/1000)
( 1 + 1000/1)(1 + 1000/2)......(1 + 1000/1999)
CMR:1+1/2+1/3+...+1/21999>1000
Giúp mik với
Tính nhanh:
a. A=\(\left(-1\right)^{2n}.\left(-1\right)^n.\left(-1\right)^{n+1}\left(n\in N\right)\)
b. B=\(\left(10000-1^2\right)\left(10000-2^2\right)\left(10000-3^2\right)..\left(10000-1000^2\right)\)
c. C=\(\left(\frac{1}{125}-\frac{1}{1^3}\right)\left(\frac{1}{125}-\frac{1}{2^3}\right)\left(\frac{1}{125}-\frac{1}{3^3}\right)...\left(\frac{1}{125}-\frac{1}{25^3}\right)\)
d. D=\(1999^{\left(1000-1^3\right)\left(1000-2^3\right)\left(1000-3^3\right)...\left(1000-10^3\right)}\)
A= 1+3+32+33+....+31999+31000
CMR A chia hết cho 13
\(CMR:\) \(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+........+\frac{1}{2^{1999}}>1000\)
Tính hợp lý : A = (-1)2.(-1)3.(-1)4......(-1)100
B = ( 1000-13)(1000-23)(1000-33).....(1000-253)
C =(1/2 - 1)(1/3-1) (1/4-1)...(1/2006-1) (1/2007-1)
Tính nhanh A = (1000-1^3).(1000-2^3).(1000-3^3).................(1000-50^3)
Bài 1:
a,A=\(\left(-1\right)^{2n}\times\left(-1\right)^n\times\left(-1\right)^{n+1},n\in N\)N
b,B=\(\left(10000-1^2\right)\times\left(10000-2^2\right)\times\left(10000-3^2\right)...\left(10000-10000^2\right)\)
c,C=\(\left(\frac{1}{125}-\frac{1}{1^3}\right)\times\left(\frac{1}{125}-\frac{1}{2^3}\right)....\left(\frac{1}{125}-\frac{1}{25^3}\right)\)
d,D=\(1999.^{\left(1000-1^2\right).\left(1000-2^2\right)....\left(1000-10^3\right)}\)
giải nhanh giúp mk nha.À đúng rồi bạn nào có link đáp án đề lớp 7 của thầy NGUYỄN CAO CƯỜNG( tuyển sinh 247) thì chp mk với, tất cả đề cô mk ra đều có trong đó cả!!MK cần gấp lắm
Cho A = \(\dfrac{1001}{1000^2+1}\)+\(\dfrac{1001}{1000^2+2}\)+\(\dfrac{1001}{1000^2+3}\)+...+\(\dfrac{1001}{1000^2+1000}\)
Chứng minh rằng 1<\(^{A^2}\)<4