a,1+1+2+2+3+3+...+100+100
=1x2+2x2+3x2+...+100x2
=2x(1+2+3+...+100)
=\(2.\frac{\left(100+1\right).\left[\left(100-1\right):1+1\right]}{2}\)
=2x5050
=10100
Chú ý dấu . là x
a, 1+1+2+2+3+...+100+100
=1+2+3+...+100+1+2+3+...+100
= (100+1)*50 /2 + (100+1)*50/2
=5050+5050
=11000