A= \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{2018.2019}\)
A= 1 - \(\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-...+\frac{1}{2018}-\frac{1}{2019}\)
A= 1 - \(\frac{1}{2019}\)
A= \(\frac{2018}{2019}\)
\(A=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{2018\cdot2019}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2018}-\frac{1}{2019}\)
\(A=1-\frac{1}{2019}\)
\(=\frac{2018}{2019}\)
Vậy \(A=\frac{2018}{2019}\)
HOK TỐT ==.==
\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+......+\frac{1}{2018.2019}\)
\(\Rightarrow A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-.....-\frac{1}{2019}\)
\(\Rightarrow A=1-\frac{1}{2019}\)
\(\Rightarrow A=\frac{2019}{2019}-\frac{1}{2019}=\frac{2018}{2019}\)
Vậy A = \(\frac{2018}{2019}\)
\(A=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{2018\cdot2019}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{2018}-\frac{1}{2019}\)
\(A=1-\frac{1}{2019}\)
\(A=\frac{2018}{2019}\)
Chúc bạn học tốt !
A=1/1.2 + 1/2.3 + 1/3.4 + 1/4.5 +...+ 1/2018.2019
A=1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + 1/4 - 1/5 + ... + 1/2018 - 1/2019
A=1 - 1/2019
A= 2019/2019 - 1/2019
A=2018/2009
Vậy A = 2018/2009
\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{2018}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2018}-\frac{1}{2019}\)
\(=1-\frac{1}{2019}\)
\(=\frac{2018}{2019}\)
Vậy \(A=\frac{2018}{2019}\)
#Hoktốt#
\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2018.2019}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2018}-\frac{1}{2019}\)
\(A=1-\frac{1}{2019}\)
\(A=\frac{2018}{2019}\)
_Chúc bạn học tốt_