Ta có:
\(A=\left(1+\frac{1}{2}\right).\left(1+\frac{1}{3}\right).\left(1+\frac{1}{4}\right).....\left(1+\frac{1}{2017}\right)\)
\(=\left(\frac{2}{2}+\frac{1}{2}\right).\left(\frac{3}{3}+\frac{1}{3}\right).\left(\frac{4}{4}+\frac{1}{4}\right).....\left(\frac{2027}{2017}+\frac{1}{2017}\right)\)
\(=\frac{3}{2}.\frac{4}{3}.\frac{5}{4}.....\frac{2018}{2017}\)
\(=\frac{2.4.5.....2018}{2.3.4.....2017}\)
\(=\frac{2018}{2}=1009\)