a,(1-1/2)*(1-1/3)*(1-1/4)....(1-1/99)*(1-1/100)
b,(1+1/2)*(1+1/3)*(1+1/4)....(1+1/99)*(1+1/100)
Chứng minh rằng :
a,1- 1/2 + 1/3 - 1/4 + 1/5 - 1/6 + ...... + 1/ 99 - 1/ 100 = 1 / 51 + 1/ 52 + 1/ 53 + ... + 1/ 100
b, A= 1/3 - 2/ 32 + 3/ 33 - 4/ 34 + .... + 99/ 399 - 100/ 3100 < 3/ 16
Chứng minh rằng :
a,1- 1/2 + 1/3 - 1/4 + 1/5 - 1/6 + ...... + 1/ 99 - 1/ 100 = 1 / 51 + 1/ 52 + 1/ 53 + ... + 1/ 100
b, A= 1/3 - 2/ 32 + 3/ 33 - 4/ 34 + .... + 99/ 399 - 100/ 3100 < 3/ 16
Giup tui nha ... Lam on ma
A = 1 . 2 + 2 . 3 + 3 . 4 + ......... + 98 . 99 / 1 + ( 1 + 2 ) + ( 1 + 2 + 3 ) + ........... + ( 1 + 2 + 3 + ...... + 98 )
B = ( 1 / 51 . 52 ) + 1 / 52 . 53 + ...... + 1 / 100 . 101 ) : ( 1 / 1 . 2 + 1 / 2 . 3 + ........ + 1 / 99 . 100 + 1 / 100 . 101
1.Chứng minh rằng a)1/2-1/4+1/8-1/16+1/32-1/64<1/3 b)1/3-2/3^2+3/3^3-4/3^4+...+99/3^99-100/3^100<3/16
bài 1
A=1*2*3+2*3*4+3*4*5+...+99*100*101
B=1*3*5+3*5*7+...+95*97*99
C=2*4+4*6+..+98*100
D=1*2+3*4+5*6+...+99*100
E=1^2+2^2+3^2+...+100^2
G=1*3+2*4+3*5+4*6+...+99*101+100*102
H=1*2^2+2*3^2+3*4^2+...+99*100^2
I=1*2*3+3*4*5+5*6*7+7*8*9+...+98*99*100
K=1^2+3^2+5^2+...+99^2
1/1*2-1/1*2*3+1/2*3-1/2*3*4+1/3*4-1/3*4*5+...+1/99*100-1/99*100*101
1+(1+2)+(1+2+3)+...+(1+2+3+4+...+99+100)/(1*100+2*99+...+99*2+100*1)*2013
CMR:
a)1/2-1/4+1/8-1/16+1/32-1/64<1/3
b)1/3 - 2/3^2 + 3/3^3 - 4/3^4 +...+ 99/3^99 -100/3^100 < 3/16