a, (x2 - 5)(x2 - 24) < 0
=> x2 - 5 và x2 - 24 trái dấu
Mà x2 - 5 > x2 - 24 => \(\hept{\begin{cases}x^2-5>0\\x^2-24>0\end{cases}\Rightarrow5< x^2< 24}\)
Vì x \(\in\)Z nên x2 = 9;16
+) x2 = 9 => x = 3 hoặc x = -3
+) x2 = 16 => x = 4 hoặc x = -4
Vậy...
b,
\(\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}=\frac{x+1}{13}+\frac{x+1}{14}\)
\(\Rightarrow\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}-\frac{x+1}{13}-\frac{x+1}{14}=0\)
\(\Rightarrow\left(x+1\right)\left(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}-\frac{1}{14}\right)=0\)
Mà \(\left(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}-\frac{1}{14}\right)\ne0\)
=> x + 1 = 0 => x = 0 - 1 => x = -1
\(\frac{x+1}{14}+\frac{x+2}{13}=\frac{x+3}{12}+\frac{x+4}{11}\)
\(\Rightarrow\left(\frac{x+1}{14}+1\right)+\left(\frac{x+2}{13}+1\right)=\left(\frac{x+3}{12}+1\right)+\left(\frac{x+4}{11}+1\right)\)
\(\Rightarrow\frac{x+15}{14}+\frac{x+15}{13}=\frac{x+15}{12}+\frac{x+15}{11}\)
\(\Rightarrow\frac{x+15}{14}+\frac{x+15}{13}-\frac{x+15}{12}-\frac{x+15}{11}=0\)
\(\Rightarrow\left(x+15\right)\left(\frac{1}{14}+\frac{1}{13}-\frac{1}{12}-\frac{1}{11}\right)=0\)
Mà \(\left(\frac{1}{14}+\frac{1}{13}-\frac{1}{12}-\frac{1}{11}\right)\ne0\)
=> x + 15 = 0 => x = 0 - 15 => x = -15