3a + 5b = 8c
3a - 3b = 8c – 8b 3(a – b) = 8(c – b)
Do đó 3(a – b) 8, từ đó a – b 8
Do ab nên a – b
- Trường hợp: a – b = 8 cho c – d = 3, ta có:
a = 8; b = 0; c = 3
a = 9; b = 1; c = 4.
- Trường hợp: a – b = - 8 cho c – b = 3, ta có:
a = 1; b = 9; c = 6.
Vậy tất cả có ba số thỏa mãn bài toán: 803, 914, 196.
123,134,145,156,167,178,189,235,246,257,268,279,347,358,369,459,213,314,415,516,617,718,819,325,426,527,628,729,437,538,639,549.
a) 3a+5b = 8c => 3a-3c = 5c-5b => 3(a-c) = 5(c-b) (*)
đã có a # c # b; 3 và 5 nguyên tố cùng nhau, từ (*) ta phải có:
a-c chia hết cho 5 và c-b chia hết cho 3 cũng thấy -9 ≤ a-c ≤ 9
* a-c = -5 ; (*) => c-b = -3 => c-a = 5 và b-c = 3
cộng lại theo vế => b-a = 8 => a = 1, b = 9 => c = 4 ; ta được số 194
* a-c = 5; (*) => c-b = 3
cộng lại => a-b = 8 => a = 8, b = 0, c = 3 hoặc a = 9, b = 1, c = 4
ta có thêm 2 số: 803 và 914
a ) 3a+5b = 8c => 3a-3c = 5c-5b => 3(a-c) = 5(c-b) (*)
đã có a # c # b; 3 và 5 nguyên tố cùng nhau, từ (*) ta phải có:
a-c chia hết cho 5 và c-b chia hết cho 3 cũng thấy -9 ≤ a-c ≤ 9
* a-c = -5 ; (*) => c-b = -3 => c-a = 5 và b-c = 3
cộng lại theo vế => b-a = 8 => a = 1, b = 9 => c = 4 ; ta được số 194
* a-c = 5; (*) => c-b = 3
cộng lại => a-b = 8 => a = 8, b = 0, c = 3 hoặc a = 9, b = 1, c = 4
ta có thêm 2 số: 803 và 914