\(\left(2x+1\right)\left(x+1\right)^2\left(2x+3\right)=18\)
\(\Leftrightarrow\left(2x+1\right)\left(2x+3\right)\left(x^2+2x+1\right)-18=0\)
\(\Leftrightarrow\left(4x^2+8x+3\right)\left(x^2+2x+1\right)-18=0\)
\(\Leftrightarrow4\left(x^2+2x+\frac{3}{4}\right)\left(x^2+2x+1\right)-18=0\)
Đặt \(a=x^2+2x+\frac{3}{4}\) \(a=x^2+2x+\frac{3}{4}\)
\(\Rightarrow4a\left(a+\frac{1}{4}\right)-18=0\)
\(\Leftrightarrow4a^2+a-18=0\)
\(\Leftrightarrow4a^2-8a+9a-18=0\)
\(\Leftrightarrow\left(4a+9\right)\left(a-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}4a+9=0\\a-2=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}a=-\frac{9}{4}\\a=2\end{cases}}\)
\(\left(+\right)a=-\frac{9}{4}\Rightarrow x^2+2x+\frac{3}{4}=-\frac{9}{4}\)
\(\Leftrightarrow x^2+2x+\frac{3}{4}+\frac{9}{4}=0\)\(\Leftrightarrow x^2+2x+3=0\)
\(\Leftrightarrow\left(x+1\right)^2+2=0\)
( vô lí )
\(\left(+\right)a=2\Rightarrow x^2+2x+\frac{3}{4}=2\)
\(\Leftrightarrow x^2+2x-\frac{5}{4}=0\)
\(\Leftrightarrow x^2+2x+1-\frac{9}{4}=0\)
\(\Leftrightarrow\left(x+1\right)^2-\left(\frac{3}{2}\right)^2=0\)
\(\Leftrightarrow\left(x+1-\frac{3}{2}\right)\left(x+1+\frac{3}{2}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+\frac{5}{2}=0\\x-\frac{1}{2}=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-\frac{5}{2}\\x=\frac{1}{2}\end{cases}}}\)
=> (2x+1)(2x+3)(x+1)2=18
=> (2x+2-1)(2x+2+1)(x+1)2=18
=> ((2x+2)2-1)(x+1)2=18
=>(2x+2)2(x+1)2 _ (x+1)2 - 18 =0
=> (2(x+1))2(x+1)2_(x+1)2 - 18=0
=> 4(x+1)4 - (x+1)2 -18 =0
đặt (x+1)2=a
phương trình <=> 4a2 - a-18=0
=> 4a2 + 8a - 9a -18=0
=> 4a(a+2)-9(a+2)=0
=> (a+2)(4a-9)=0
từ đó tìm ra a xong tìm ra x mình nghĩ bạn giải đc :D