ĐKXĐ:...
\(A=\left(\frac{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}-\frac{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}\right):\left(\frac{2\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right)\)
\(=\left(\frac{x+\sqrt{x}+1}{\sqrt{x}}-\frac{x-\sqrt{x}+1}{\sqrt{x}}\right):\left(\frac{2\left(\sqrt{x}-1\right)}{\sqrt{x}+1}\right)\)
\(=\frac{2\sqrt{x}}{\sqrt{x}}.\frac{\left(\sqrt{x}+1\right)}{2\left(\sqrt{x}-1\right)}=\frac{\sqrt{x}+1}{\sqrt{x}-1}\)
Để \(A< 0\Leftrightarrow\frac{\sqrt{x}+1}{\sqrt{x}-1}< 0\Leftrightarrow\sqrt{x}-1< 0\Leftrightarrow\sqrt{x}< 1\Rightarrow x< 1\)
c/ \(A=\frac{\sqrt{x}-1+2}{\sqrt{x}-1}=1+\frac{2}{\sqrt{x}-1}\)
Để A nguyên \(\Rightarrow\sqrt{x}-1=Ư\left(2\right)=\left\{-2;-1;1;2\right\}\)
\(\sqrt{x}-1=-2\Rightarrow\sqrt{x}=-1< 0\left(l\right)\)
\(\sqrt{x}-1=-1\Rightarrow x=0\)
\(\sqrt{x}-1=1\Rightarrow x=4\)
\(\sqrt{x}-1=2\Rightarrow x=9\)