Bài 8: Rút gọn biểu thức chứa căn bậc hai

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Trang Nguyễn

cho B=\(\left(\dfrac{2\sqrt{x}+x}{x\sqrt{x}-1}-\dfrac{1}{\sqrt{x}-1}\right)\div\left(1-\dfrac{\sqrt{x}+2}{x+\sqrt{x}+1}\right)\)

a. rút gọn B

b. tính \(\sqrt{B}\) khi \(x=5+2\sqrt{3}\)

c. tìm x để B= \(\dfrac{1}{2x^3-x-1}\)

d. tìm giá trị của x để giá trị của B không lớn hơn giá trị biểu thức \(\dfrac{1}{x+2}\)

Lm nhanh giúp mk nhé mk đang cần gấp

An Thy
10 tháng 7 2021 lúc 8:54

a) \(B=\left(\dfrac{2\sqrt{x}+x}{x\sqrt{x}-1}-\dfrac{1}{\sqrt{x}-1}\right):\left(1-\dfrac{\sqrt{x}+2}{x+\sqrt{x}+1}\right)\left(x\ge0,x\ne1\right)\)

\(=\left(\dfrac{2\sqrt{x}+x}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}-\dfrac{1}{\sqrt{x}-1}\right):\dfrac{x+\sqrt{x}+1-\sqrt{x}-2}{x+\sqrt{x}+1}\)

\(=\dfrac{2\sqrt{x}+x-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}:\dfrac{x-1}{x+\sqrt{x}+1}\)

\(=\dfrac{\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}.\dfrac{x+\sqrt{x}+1}{x-1}=\dfrac{1}{x-1}\)

 

Laku
10 tháng 7 2021 lúc 9:04

undefinedundefined

Nguyễn Lê Phước Thịnh
10 tháng 7 2021 lúc 11:38

a) Ta có: \(B=\left(\dfrac{2\sqrt{x}+x}{x\sqrt{x}-1}-\dfrac{1}{\sqrt{x}-1}\right):\left(1-\dfrac{\sqrt{x}+2}{x+\sqrt{x}+1}\right)\)

\(=\dfrac{x+2\sqrt{x}-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}:\dfrac{x+\sqrt{x}+1-\sqrt{x}-2}{\left(x+\sqrt{x}+1\right)}\)

\(=\dfrac{1}{x+\sqrt{x}+1}\cdot\dfrac{x+\sqrt{x}+1}{x-1}\)

\(=\dfrac{1}{x-1}\)


Các câu hỏi tương tự
Trang Nguyễn
Xem chi tiết
Trang Nguyễn
Xem chi tiết
2008
Xem chi tiết
Trang Nguyễn
Xem chi tiết
Thiện Đàm Đức
Xem chi tiết
Đỗ ĐứcAnh
Xem chi tiết
Nam Thanh Vũ
Xem chi tiết
Linh Bùi
Xem chi tiết
em ơi
Xem chi tiết