\(ChoQ=\left(\frac{\sqrt{x}-2}{x-1}-\frac{\sqrt{x}+2}{x+2\sqrt{x}+1}\right)\left(\frac{1-x}{\sqrt{2}}\right)^2\)
a, rút gọn
b, chứng minh nếu 0<x<1 thì Q>0
c, tìm GTLN của Q
\(ChoA=\frac{1}{2\left(1+\sqrt{x}+2\right)}+\frac{1}{2\left(1-\sqrt{x}+2\right)}\)
a, tìm x để a có nghĩa
b, rút gon A
c, tìm X nguyên để A nguyên
\(ChoA=\left(\frac{\sqrt{a}}{\sqrt{a-1}}-\frac{1}{a-\sqrt{a}}\right):\left(\frac{1}{\sqrt{a}-1}-\frac{2}{a-1}\right)\)
a, Rút gọn A
b, tính A Khi a=3+\(2\sqrt{2}\)
Cho A=\(\left(\frac{\sqrt{x}-2}{x-1}-\frac{\sqrt{x}+2}{x+2\sqrt{x}+1}\right)\frac{\left(1-x\right)^2}{2}\)
a) Rút gọn
b) Tìm x để A dương
c) Tìm GTLN của A
Cho P=\(\left(\frac{\sqrt{x}-2}{x-1}-\frac{\sqrt{x}+2}{x+2\sqrt{x}+1}\right)\times\left(\frac{1-x}{\sqrt{2}}\right)^2\)
a) Rút gọn P
b) CMR : 0 < x <1 thì P > 0
c) Tìm GTLN của P
Mọi người giúp mình với nha , mình cảm ơn
Cho biểu thưc A=\(\left(\frac{\sqrt{x}-2}{x-1}-\frac{\sqrt{x}+2}{x+2\sqrt{x}+1}\right).\)).\(\frac{\left(\sqrt{x}-1\right)^2}{2}\)
với x lớn hơn hoặc = 0, x khác 1
a) Rút gọn A
b) Tìm GTLN của A
A=\(\left(\frac{\sqrt{x-2}}{x-1}-\frac{\sqrt{x+2}}{x+2\sqrt{x+1}}\right)\cdot\frac{\left(1-x\right)^2}{2}\)
a, rút gọn A
b, tìm x để A dương
c, tìm GTLN của A
1. Cho A = \(\left(\frac{\sqrt{x}+2}{x+2\sqrt{x}+1}-\frac{\sqrt{x}-2}{x-1}\right):\frac{\sqrt{x}}{\sqrt{x}+1}\) với x > 0 và x khác 1.
a) Rút gọn A.
b) Tìm các giá trị nguyên của x để A có giá trị nguyên.
2. Rút gọn:
a) \(\left(2-\frac{a+\sqrt{a}}{\sqrt{a}+1}\right)\left(2-\frac{2\sqrt{a}-a}{\sqrt{a}-2}\right)\)với a >= 0 và a khác 4.
b) \(\left(\frac{x-\sqrt{x}}{\sqrt{x}-1}-\frac{\sqrt{x}+1}{x+\sqrt{x}}\right):\frac{\sqrt{x}+1}{x}\) với a > 0 và x khác 1.
c) \(\left(\frac{1-x\sqrt{x}}{1-x}+\sqrt{x}\right)\left(\frac{1-\sqrt{x}}{1-x}\right)^2\) với x >= 0 và x khác 1.
1. Cho biểu thức: B = \(\left(\frac{\sqrt{x}}{2}-\frac{1}{2\sqrt{x}}\right)^2\left(\frac{\sqrt{x}-1}{\sqrt{x}+1}-\frac{\sqrt{x}+1}{\sqrt{x}-1}\right).\)
a) Rút gọn B.
b) Tìm x để B<0.
c) Tìm x để B = -2.
2. Tìm GTLN của A = \(\sqrt{1-x}+\sqrt{1+x}.\)
Cho biểu thức : B = \(\left(\frac{1}{x-\sqrt{x}}+\frac{1}{\sqrt{x}-1}\right):\frac{\sqrt{x}+1}{\left(\sqrt{x}-1\right)^2}\)
a) Tìm ĐKXĐ và rút gọn biểu thức B
b) So sánh B với 2
c) Tìm GTLN của A = B - \(9\sqrt{x}\)
\(\left(\frac{x-3\sqrt{x}}{x-9}-1\right)\):\(\left(\frac{9-x}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}+\frac{\sqrt{x}-3}{\sqrt{x}-2}-\frac{\sqrt{x}+2}{\sqrt{x}+3}\right)\)rút gọn và tìm gtln