\(A=\frac{1}{2}.\left(\frac{1}{3.5}+\frac{1}{5.7}+...\frac{1}{37.39}\right)\)
\(A=\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{39}\right)=\frac{1}{2}.\frac{12}{39}=\frac{6}{39}\)
Ta đặt nhân tử chung nha :
\(A=\frac{1}{2}\left(\frac{1}{3.5}+\frac{1}{5.7}+.....+\frac{1}{37.39}\right)\)
\(=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{39}\right)\)
\(=\frac{1}{2}.\frac{12}{39}\)
\(=\frac{6}{39}\)
=\(\frac{5-3}{3\cdot5}\)+ \(\frac{7-5}{5\cdot7}\)+ \(\frac{9-7}{7\cdot9}\)+...+ \(\frac{39-37}{37\cdot39}\)
= \(\frac{5}{3\cdot5}\)- \(\frac{3}{3\cdot5}\)+ \(\frac{7}{5\cdot7}\)- \(\frac{5}{5\cdot7}\)+ \(\frac{9}{7\cdot9}\)- \(\frac{7}{7\cdot9}\)+...+ \(\frac{39}{37\cdot39}\)- \(\frac{37}{37\cdot39}\)
= \(\frac{1}{3}\)- \(\frac{1}{5}\)+ \(\frac{1}{5}\)- \(\frac{1}{7}\)+ \(\frac{1}{7}\)- \(\frac{1}{9}\)+...+ \(\frac{1}{37}\)- \(\frac{1}{39}\)
= \(\frac{1}{3}\)- \(\frac{1}{39}\)
=\(\frac{4}{13}\)