a/ Quy đồng vế phải, hình như lộn mẫu cuối là căn 2 của (n+1) mới đúng
\(VP=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}=\frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n}.\sqrt{n+1}}=\frac{\frac{n+1-n}{\sqrt{n+1}+\sqrt{n}}}{\sqrt{n+1}.\sqrt{n}}\)
\(=\frac{1}{\left(\sqrt{n+1}+\sqrt{n}\right).\sqrt{n+1}.\sqrt{n}}=\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=VT\)
\(B=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{24}}-\frac{1}{\sqrt{25}}\)
\(=1-\frac{1}{\sqrt{25}}\)