Chứng minh rằng:
a,\(\frac{1}{2}-\frac{1}{4}+\frac{1}{8}-\frac{1}{16}+\frac{1}{32}-\frac{1}{64}< \frac{1}{3}\)
b,\(\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}-...+\frac{99}{3^{99}}-\frac{100}{3^{100}}\)
giúp minh với
1. Chứng Minh Rằng \(\frac{1}{3^1}+\frac{2}{3^2}+\frac{3}{3^3}+\frac{4}{3^4}+.....+\frac{100}{3^{100}}<\frac{3}{4}\)
2. Chứng Minh Rằng \(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{2015.2016}=\frac{1}{1009}+\frac{1}{1010}+\frac{1}{1011}+...+\frac{1}{2012}\)
Chứng minh rằng:
a) \(\frac{1}{2}-\frac{1}{4}+\frac{1}{8}-\frac{1}{16}+\frac{1}{32}-\frac{1}{64}< \frac{1}{3}\)
b) \(\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+...+\frac{99}{3^{99}}-\frac{100}{3^{100}}< \frac{3}{16}\)
Chứng minh rằng
a,\(\frac{1}{2}-\frac{1}{4}+\frac{1}{8}-\frac{1}{16}+\frac{1}{32}-\frac{1}{64}
Chứng minh rằng: \(A=\frac{1}{3^2}-\frac{1}{3^4}+...+\frac{1}{3^{4n-2}}-\frac{1}{3^{4n}}+...+\frac{1}{3^{98}}-\frac{1}{3^{100}}
bài 1:chứng minh rằng:
a,\(\frac{1}{2}-\frac{1}{4}+\frac{1}{8}-\frac{1}{16}+\frac{1}{32}-\frac{1}{64}\)< \(\frac{1}{3}\)
b,\(\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+...+\frac{99}{3^{99}}-\frac{100}{3^{100}}< \frac{3}{16}\)
Chứng minh rằng:
\(A=\frac{1}{3^2}+\frac{1}{3^4}+......+\frac{1}{3^{4n-2}}+\frac{1}{3^{4n}}+...+\frac{1}{3^{98}}-\frac{1}{3^{100}}<0,1\)
Chứng minh rằng:
A=\(\frac{1}{3^2}+\frac{1}{3^4}+.......+\frac{1}{3^{4n-2}}+\frac{1}{3^{4n}}+....+\frac{1}{3^{98}}-\frac{1}{3^{100}}\)< 0,1
Chứng minh rằng:
a) \(\frac{1}{2}-\frac{1}{4}+\frac{1}{8}-\frac{1}{16}+\frac{1}{32}-\frac{1}{64}<\frac{1}{3}\)
b)\(\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+...+\frac{99}{3^{99}}-\frac{100}{3^{100}}<\frac{3}{16}\)