ta có BĐT cần chứng minh
<=>\(\frac{2}{3}a^2-\frac{4}{3}ab+\frac{2}{3}b^2\Leftrightarrow a^2-2ab+b^2\ge0\Leftrightarrow\left(a-b\right)^2\ge0\) (luôn đúng)
dấu = xảy ra <=>a=b
^_^
ta có BĐT cần chứng minh
<=>\(\frac{2}{3}a^2-\frac{4}{3}ab+\frac{2}{3}b^2\Leftrightarrow a^2-2ab+b^2\ge0\Leftrightarrow\left(a-b\right)^2\ge0\) (luôn đúng)
dấu = xảy ra <=>a=b
^_^
Bài 1:Cho a,b,c>0. Chứng minh rằng:
\(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\ge\sqrt{a^2-ab+b^2}+\sqrt{b^2-bc+c^2}+\sqrt{c^2-ca+a^2}\)
Bài 2: Cho 3 số dương a,b,c. Tìm giá trị nhỏ nhất của biểu thức:
\(A=\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)\left(\frac{b}{a}+\frac{c}{b}+\frac{a}{c}\right)+a^2+b^2+c^2-ab-bc-ca+2020\)
Bài 1:Cho a,b,c,d là các số dương. Chứng minh rằng :
\(\frac{a^4}{\left(a+b\right)\left(a^2+b^2\right)}+\frac{b^4}{\left(b+c\right)\left(b^2+c^2\right)}+\frac{c^4}{\left(c+d\right)\left(c^2+d^2\right)}+\frac{d^4}{\left(d+a\right)\left(d^2+a^2\right)}\ge\frac{a+b+c+d}{4}\)
Bài 2:Cho \(a>0,b>0,c>0\).\(CM:\frac{a}{bc}+\frac{b}{ca}+\frac{c}{ab}\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
Bài 3: a) Cho x,y,>0. CMR:\(\frac{x^3}{x^2+xy+y^2}\ge\frac{2x-y}{3}\)
b) Chứng minh rằng\(\Sigma\frac{a^3}{a^2+ab+b^2}\ge\frac{a+b+c}{3}\)
với a, b, c >0. Chứng minh rằng: \(\frac{a}{bc\left(c+a\right)}+\frac{b}{ca\left(a+b\right)}+\frac{c}{ab\left(b+c\right)}\ge\frac{27}{2\left(a+b+c\right)^2}\)
Cho a,b,c>0
Chứng minh rằng:\(a\left(\frac{a}{2}+\frac{1}{bc}\right)+b\left(\frac{b}{2}+\frac{1}{ca}\right)+c\left(\frac{c}{2}+\frac{1}{ab}\right)\ge\frac{9}{2}\)
Anh em cùng cha khác ông nội với Iran 96
Cho các số thực không âm thỏa mãn \(\frac{a}{b+c}\ge2\) Chứng minh rằng:
\(\left(ab+bc+ca\right)\left[\frac{1}{\left(a-b\right)^2}+\frac{1}{\left(b-c\right)^2}+\frac{1}{\left(c-a\right)^2}\right]\ge\frac{49}{18}\)
Mời mọi người :D
Cho a , b , c > 0 . Chứng minh rằng :
\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\ge\frac{3}{2}+\frac{7}{16}\cdot\frac{max\left\{\left(a-b\right)^2,\left(b-c\right)^2,\left(c-a\right)^2\right\}}{ab+bc+ca}\)
Cho 3 so thuc a,b,c khong am thỏa mãn (a+b)(b+c)(c+a)>0.Chứng minh rằng
\(\frac{1}{\left(b+c\right)^2}+\frac{1}{\left(a+b\right)^2}+\frac{1}{\left(a+c\right)^2}\ge\)\(\frac{9}{4\left(ab+bc+ac\right)}\)
1)Tính giá trị của biểu thức A=\(\frac{xy-\sqrt{\left(x^2-1\right)}\cdot\sqrt{y^2-1}}{xy+\sqrt{x^2-1}\cdot\sqrt{y^2-1}}\)với x=\(\frac{1}{2}\left(a+\frac{1}{a}\right)\)và y=\(\frac{1}{2}\left(b+\frac{1}{b}\right)\)với a\(\ge\)1 ,
b\(\ge\)1
2)Cho ba số a,b,c thỏa mãn \(0\le a,b,c\le2\)và a+b+c=3. Chứng minh \(\sqrt{ab}+\sqrt{bc}\sqrt{ca}\ge\sqrt{2}\)
giúp mình với . Cảm ơn
Cho a,b,c là các số thực dương. CHỨNG MINH RẰNG : \(\frac{bc}{a^2\left(b+c\right)}+\frac{ca}{b^2\left(c+a\right)}+\frac{ab}{c^2\left(a+b\right)}\ge\frac{1}{2a}+\frac{1}{2b}+\frac{1}{2c}\)