1.Chứng minh rằng: \(x^5+y^5\ge x^4y+xy^4\)với \(x,y\ne0;x+y\ge0\)
2.Cho ba số a, b, c khác 0 thỏa nãm đẳng thức : \(\frac{a+b-c}{c}=\frac{a+c-b}{b}=\frac{c+b-a}{a}\)
Tính : \(P=\frac{\left(a+b\right)\left(b+a\right)\left(a+c\right)}{abc}\)
Các thánh lại giải bài này đi!!!
Bài tập 3* . Chứng minh rằng :
\(x^2+y^2+\frac{1}{x}+\frac{1}{y}\ge2\left(\sqrt{x}+\sqrt{y}\right)\) với x, y > 0
Bài tập 5* . Chứng minh rằng :
\(\frac{a}{b+c+1}+\frac{b}{a+c+1}+\frac{c}{a+b+1}+\left(1-a\right)\left(1-b\right)\left(1-c\right)\le1\)với \(0\le a,b,c\le1\)
Bài tập 9* . Chứng minh rằng :
\(\frac{1}{a^3+b^3+abc}+\frac{1}{b^3+c^3+abc}+\frac{1}{a^3+c^3+abc}\le\frac{1}{abc}\)với a, b, c > 0
Chứng minh rằng nếu ta có đẳng thức:
\(a\left(b-c\right)x^2+b\left(c-a\right)xy+c\left(a-b\right)y^2=d\left(x-y\right)^2\) trong đó\(a,b,c\ne0\)với \(\forall x,y\) thì:
\(\frac{1}{a}+\frac{1}{c}=\frac{2}{b}\)
Chu mi ngaa!!!
Bài 1 : Cho 2 số thực a , b thỏa mãn a + b = 5 và ab = 6 . Hãy tính giá trị của các biểu thức sau : \(a^2+b^2\) ; \(a^3+b^3\); \(a^4+b^4\) ; \(a^5+b^5\) ; \(a^6+b^6\)
Bài 2 :
a) Chứng minh rằng : \(a^2-ab+b^2=\frac{1}{4}\left(a+b\right)^2+\frac{3}{4}\left(a-b\right)^2\) với mọi số thực a , b
b) Cho hằng đẳng thức \(2a^2-5ab+2b^2=x\left(a+b\right)^2+y\left(a-b\right)^2\)
c) Chứng minh rằng \(\left(a+b+c\right)^3=a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
d) Chứng minh rằng \(\left(ax+by\right)^2+\left(ay-bx\right)^2=\left(a^2+b^2\right)\left(x^2+y^2\right)\) với mọi số thực a , b , x , y
1.Cho a + b = -5 và ab = 6. Tính \(^{a^3-b^3}\)
2.Chứng minh rằng tổng lập phương của một số nguyên với 11 lần số đó là một số chia hết cho 6
3.Chứng minh rằng \(ab\left(a^2-b^2\right)\)chia hết cho cho 6 với mọi số nguyên a,b
4.Chứng minh biểu thức \(x^2-x+\frac{1}{3}>0\)với mọi số thực x
5.Cho \(a+b+c=0.\)Chứng minh rằng H=K biết rằng H=\(a\left(a+b\right)\left(a+c\right)và\)\(K=c\left(c+a\right)\left(c+b\right)\)
6. Với p là số nguyên tố, p>2. Chứng minh \(\left(p^3-p\right)\)chia hết cho 24
\(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\)<2
2. Chứng minh rằng : x5 + y5 ≥ x4y + xy4 với x, y ≠ 0 và x + y ≥ 0
3. Cho ba số a, b, c khác 0 thỏa nãm đẳng thức : \(\frac{a+b-c}{c}=\frac{a+c-b}{b}=\frac{c+b-a}{c}\)
Tính : \(P=\frac{\left(a+b\right)\left(b+c\right)\left(a+c\right)}{abc}\)
4. Cho a + b + c = 0 . Chứng minh rằng : a3 + b3 + c3 = 3abc.
Hôm nay mình lại post bài lên nữa đây :D( lần này thì các bạn khỏi lo sai đề giống lần trước nhé,lần trước mình bất cẩn quá :D )
1.Với \(a,b,c>0\).Chứng minh:
\(\left[\left(a^2+b^2+c^2\right)\left(a+b+c\right)+3abc\right]^2\ge2\left[a^2+b^2+c^2+\left(a+b+c\right)^2\right]\left[a^3b+b^3c+c^3a+abc\left(a+b+c\right)\right]\)
2.Với \(\hept{\begin{cases}a,b,c>0\\a+b+c=3\end{cases}}\).Chứng minh:
\(\frac{a}{b^2+c}+\frac{b}{c^2+a}+\frac{c}{a^2+b}\ge\frac{3}{2}\)
3.Với \(a,b,c>0\).Chứng minh:
\(ab\left(b^2+ca\right)+bc\left(c^2+ab\right)+ca\left(a^2+bc\right)\ge2\left(a^2b^2+b^2c^2+c^2a^2\right)\)
Chứng minh bất đẳng thức
\(1,\frac{a}{b}+\frac{b}{a}\ge2\)
\(2,a^2+b^2+c^2\ge ab+bc+ca\)
\(3,\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)
\(4,\frac{1}{a}+\frac{1}{b}\ge\frac{4}{ab}\left(a,b>0\right)\)
\(5, 3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\)
Chứng minh đẳng thức sau :
a) \(x^2+y^2=\left(x+y\right)^2-2xy\)
b)\(\left(a+b\right)^2-\left(a-b\right)\cdot\left(a+b\right)=2b\left(a+b\right)\)
c)\(\left(a+b\right)^2-\left(a-b\right)^2=ab\)