Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
dinhvanhungg

a) cho các số tự nhiên a , b, c thỏa mãn a^2 + b^2 + c^2 = ab + bc + ca và a + b + c = 3 ; 

Tính M = a^2016 + 2015b^2015 + 2020c

b) cho x > y > 0 . CM ( x - y ) / ( x + y) < ( x^2 - y^2 ) / ( x^2 + y^2 ) 

Giải giúp mk vs , ảnh hưởng tới tương lai gần của mk đấy , vs lai giải xong thì kb vs mk nhe :))

Trần Thị Hà Giang
13 tháng 4 2019 lúc 15:39

a) \(a^2+b^2+c^2=ab+bc+ca\)

\(\Leftrightarrow2\left(a^2+b^2+c^2\right)=2ab+2bc+2ca\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}\left(a-b\right)^2=0\\\left(b-c\right)^2=0\\\left(c-a\right)^2=0\end{cases}}\Leftrightarrow a=b=c\)

Mà a + b + c = 3  \(\Rightarrow a=b=c=1\)

\(\Rightarrow M=1+2015+2020\)\(=4036\)

Trần Thanh Phương
13 tháng 4 2019 lúc 18:32

b) \(\frac{x-y}{x+y}< \frac{x^2-y^2}{x^2+y^2}\)

\(\Rightarrow\left(x-y\right)\left(x^2+y^2\right)< \left(x+y\right)\left(x^2-y^2\right)\)

\(\Leftrightarrow\left(x-y\right)\left(x^2+y^2\right)-\left(x+y\right)\left(x-y\right)\left(x+y\right)< 0\)

\(\Leftrightarrow\left(x-y\right)\left[x^2+y^2-\left(x+y\right)\left(x+y\right)\right]< 0\)

\(\Leftrightarrow\left(x-y\right)\left(x^2+y^2-x^2-2xy-y^2\right)< 0\)

\(\Leftrightarrow-2xy\left(x-y\right)< 0\)

Có \(x>y\Rightarrow x-y>0\)

\(\Rightarrow-2xy< 0\)

\(\Leftrightarrow xy>0\)

TH1: \(\orbr{\begin{cases}x>0\\y>0\end{cases}}\)( thỏa mãn )

TH2:\(\orbr{\begin{cases}x< 0\\y< 0\end{cases}}\)( loại )

Vậy bđt được chứng minh

dinhvanhungg
14 tháng 4 2019 lúc 16:21

Thanh diu ve di mắt 


Các câu hỏi tương tự
Hoàng Thị Hải Yến
Xem chi tiết
Hưng Lê
Xem chi tiết
Cần Một Người Quan Tâm
Xem chi tiết
Nguyễn Thị Thanh Huyền
Xem chi tiết
dinhvanhungg
Xem chi tiết
Anh Lê Đức
Xem chi tiết
Cô gái thất thường (Ánh...
Xem chi tiết
Nguyễn Trần Thanh Loan
Xem chi tiết
Nguyễn Vi Vi
Xem chi tiết