19 a) Cho (a-b)^2+(b-c)^2+(c-a)^2=(a+b-2c)^2+(b+c-2a)^2+(c+a-2b)^2
Chứng minh rằng a=b=c
b) Cho a,b,c,d là các số khác 0 và
(a+b+c+d)(a-b+c-d)(a+b-c-d)
Chứng minh rằng a/c=b/d
Cho a,b,c thỏa mãn (a+b-2c)^2+(b+c-2a)^2+(c+a-2b)^2= (a-b)^2+(b-c)^2+(c-a)^2. Chứng minh rằng a=b=c
a)Chứng minh rằng với mọi a và b thì
a^4 - 2a^3b+2a^2b^2 - 2ab^3+ b^4 lớn hơn hoăc bằng 0
b) Cho a^2 = b^2+c^2. Chứng minh rằng (5a - 3b+ 4c)(5a - 3b - 4c) lớn hơn hoặc bằng 0
Cho a,b>0 a+2b=1 Chứng minh rằng
1/8ab + 2ab/a^2+b^2 > 3/2
cho a+b+c=2;chứng minh rằng (2-c)(b-c)/2a+bc+(2-a)(c-a)/2b+ca+(2-b)(a-b)/2c+ab lớn hơn hoặc bằng 0
a)Cho (a+b)^2 = 4ab . Chứng minh rằng a=b
b)Cho (a^2+b^2)(x^2+y^2)=(ax+by)^2 . Chứng minh rằng ay=bx
cho 2 số dương a và b .chứng minh rằng a^3 -3ab^2 +2b^3 là số không âm
Cho 3a+ 2b+c >= 14. Chứng minh rằng a^2+b^2+c^2 >=14
1.Cho bốn số dương a, b, c, d.
Chứng minh rằng
: \(\sqrt{ab}+\sqrt{cd}< =\sqrt{\left(a+d\right)}\left(b+c\right)\)
2. Cho a2+b2 =<2
Chứng minh rằng:
\(a\sqrt{3a\left(a+2b\right)}+b\sqrt{3b\left(b+2a\right)}=< 6\)