Cho tam giác ABC có 3 góc nhọn và AH là dg cao.
a'Chứng minh \(AB^2\)+\(CH^2\)=\(AC^2\)+\(BH^2\)
b'Vẽ trung tuyến AM của tam giác ABC,chứng minh:
i;\(AB^2\)+\(AC^2\)=\(\frac{BC^2}{2}\)+\(2AM^2\)
ii;\(AC^2\)-\(AB^2\)=2BC.HM(với AC>AB)
Giup mk câu b ạ
Cho tam giác ABC vuông tại A, đường cao AH, AB=a, AC=b. K là hình chiếu của H lên AB
a. C/m \(\dfrac{HB}{HC}=\dfrac{a^2}{b^2}\)
b. C/m HK=\(\dfrac{a^2b}{a^2+b^2}\)
c. Giả sử \(\dfrac{a}{b}=\dfrac{3}{4}\) và AH=12. Tính AB, AC, BC, HB
\(cho\Delta abc\) vuông tại A đường cao AH vẽ HK\(\perp\)AB(K\(\in\)AB) câu a cm: AB.AK=HB.HC câu b cm: \(\dfrac{AB^2}{AC^2}=\dfrac{HB}{HC}\) câu c vẽ HE\(\perp\)AC. CM: \(\dfrac{BH}{CE}=\dfrac{AB^3}{AC^3}\) câu d giả sử AB<AC. Lấy M\(\in\)HC; HM=HA. Qua M vẽ 1 đường thẳng \(\perp\) BC cắt AC tại F. CM: \(\dfrac{1}{AH^2}=\dfrac{1}{AF^2}+\dfrac{1}{AC^2}\)
Trong tam giác ABC vuông tại A có đường cao AH : AB = c, AC = b, BC = a, AH = h, BH = c', CH = b'
Chứng minh rằng :
a) \(h=\dfrac{bc}{a}\)
b) \(\dfrac{b^2}{c^2}=\dfrac{b'}{c'}\)
Cho tam giác ABC vuông tại A, đường cao AE. Gọi I là trung điểm AB. Vẽ IH vuông góc với BC tại h
a) Chứng minh \(\dfrac{1}{4IH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\)
b) Chứng minh AC2 + BH2 = CH2
Cho \(\Delta ABC\) vuông tại A, \(AH\perp BC\), \(HM\perp AB,HN\perp AC,H\in BC,M\in AB,N\in AC.\) Chứng minh:
a) AM.AB = AN.AC
b) HB.HC = MA.MB + NA.NC
c) \(\dfrac{HB}{HC}=\left(\dfrac{AB}{AC}\right)^2\)
d) \(\dfrac{BM}{CN}=\left(\dfrac{AB}{AC}\right)^3\)
Cho tam giác ABC , trung tuyến AM. Chứng minh AB^2+AC^2=2AM^2+BC^2/2
1.Cho tam giác ABC vuông tại A có Ah là đường cao. E là hình chiếu H trên AC, D là hình chiếu H trên AB
a) Chứng minh \(\dfrac{DB}{EC}=\left(\dfrac{AB}{AC}\right)^3\)
b) Cho BC = 10cm, AH = 5cm. Tính SADHE ?
c) Kẻ phân giác BI (\(I\in AC\) ) và phân giác CF (\(F\in AB\) ) cắt nhau tại K. Chứng minh BI.CF = 2.BK.CK
2. Chứng minh hệ thức lượng đảo : nếu \(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\) hay AB.AC = BC.AH thì tam giác ABC cuông tại A có AH đường và H nằm giữa B và C
1. Cho tam giác ABC vuông tại C, đường cao CK.
a) Tính BC, CK, BK và AK biết AB = 10cm , AC=8cm.
b) Gọi H và I theo thứ tự là hình chiếu của K trên BC và AC. Tứ giác CHKI là hình gì? Vì sao?
c) Chứng minh; \(\text{CB.CH=CA.CI}\)
d) Chứng minh: \(\dfrac{AI}{BH}=\dfrac{AC^3}{BC^3}\)
e) \(AB\cdot BH\cdot AI=CK^3\)
f) Gọi M là hình chiếu của K trên IH. Chứng minh: \(\dfrac{1}{KM^2}=\dfrac{1}{CH^2}+\dfrac{1}{CI^2}\)
2. Cho tam giác ABC cân tại A, các đường cao AH và BK. Kẻ đường thẳng vuông góc với BC tại B cắt tia CA tại D. Chứng minh:
a) \(BD=2AH\)
b) \(\dfrac{1}{BK^2}=\dfrac{1}{DC^2}+\dfrac{1}{4HA^2}\)
Cho hình bình hành ABCD có \(AC\perp AD\), kẻ \(AH\perp DC\) tại H, đường thẳng AH cắt BC tại I. Chứng minh:
a)\(AC^2=CH.CD=CB.CI\)
b) AH.AI + DH.DC = BC
c) \(\dfrac{1}{AB^2}+\dfrac{1}{AD^2}=\dfrac{1}{CH.HD}=\dfrac{1}{AI^2}\)