Vì các điểm A, C, C 1 và A 1 cùng thuộc mp(AC C 1 A 1 )mà AC C 1 A 1 là một hình chữ nhật nên A C 1 cắt A 1 C
Vì các điểm A, C, C 1 và A 1 cùng thuộc mp(AC C 1 A 1 )mà AC C 1 A 1 là một hình chữ nhật nên A C 1 cắt A 1 C
Hãy xét xem các bất phương trình sau có là bất phương trình bậc nhất một ẩn hay không?
a) 0 x + 3 ≥ 0 ; b) x − 1 < 0 ;
c) 2 3 x ≤ 0 ; d) 2 x 2 5 + 1 > 0 .
Cho hình thang ABCD có AB//CD; AB=a, BC=b, CD=c, AD=d Tia phân giác trong của góc A và góc D cắt nhau ở M tia phân giác ngoài của góc C và góc B cắt nhau ở N
1) CM MN//AB
2) Tính MN theo a,b,c,d
Cho hình lập phương ABCD. A1B1 C1 D1 có cạnh bằng 5 cm . Gọi O và O1 lần lượt là giao điểm của các đường chéo AC với BD và A1C1 với B1 D1.
.a) Tính diện tích toàn phần và thể tích của hình lập phươhương
b) Tinh thể tích của hình chóp O1
lm hộ mk đi please ;(
1. Cho tứ giác ABCD có góc C - góc D = 10o. Các tia phân giác góc A và B cắt nhau tại I. Biết góc AIB = 65o. Tính góc C và D.
2. Cho tứ giác ABCD. Các tia phân giác góc A,B,C,D cắt nhau thành 1 tứ giác. Chứng minh tứ giác đó có tổng 2 góc đối = 180o.
3. Tứ giác ABCD có góc A = góc C = 90o. Chứng minh phân giác góc B và D // với nhau hoặc trùng nhau.
Cho a, b, c, d là các số nguyên dương đôi một khác nhau thỏa mãn:(a/a+b) + (b/b+c )+( c/c+d) +(d/d+a) =2
C/m abcd là 1 số chính phương
Giúp mik nha thanhks
Cho hình thang ABCD có AB song song CD. AB=a;BC=b;CD=c,AD=d(d<c) tia phân giác trong của góc A và D cắt nhau tại M.Tia phân giác ngoài góc B và C cắt nhau ở N.
1)CM: MN song song AB
2)Tính MN theo AB;CD
Bài 1: (4,0 điểm). Cho biểu thức
a) Rút gọn biểu thức P.
b) Tìm x để .
c) Tìm giá trị nguyên của x để P nhận giá trị là số nguyên.
Bài 2: (4,5 điểm).
a) Giải phương trình : .
b) Phân tích đa thức sau thành nhân tử: (x + 2)(2x2 – 5x) - x3 - 8
c) Cho x, y, z là các số khác 0 và đôi một khác nhau thỏa mãn: . Tính giá trị của biểu thức: .
Bài 3: (4,0 điểm).
a) Tìm tất cả các cặp số nguyên (x; y) thỏa mãn: y(x – 1) = x2 + 2
b) Chứng minh rằng nếu các số nguyên a, b, c thỏa mãn b2 – 4ac và b2 + 4ac đồng thời là các số chính phương thì abc 30.
Bài 4: (6,0 điểm).
1) Cho tam giác ABC vuông tại A. Lấy một điểm M bất kỳ trên cạnh AC. Từ C vẽ một đường thẳng vuông góc với tia BM, đường thẳng này cắt tia BM tại D, cắt tia BA tại E, EM cắt BC tại I.
a) Chứng minh EA.EB = ED.EC.
b) Chứng minh .
c) Chứng minh BM.BD + CM.CA = BC2.
d) Vẽ đường thẳng vuông góc với AB tại B, đường thẳng vuông góc với CD tại C, chúng cắt nhau tại K. Chứng minh MK luôn đi qua một điểm cố định khi M thay đổi.
e) Đặt BC = a; EC = b; BE = c; AD = a’; AI = b’; DI = c’.
Chứng minh .
2) Cho điểm D thay đổi trên cạnh BC của tam giác nhọn ABC (D khác B và C). Từ D kẻ đường thẳng song song với AB cắt cạnh AC tại điểm N. Cũng từ D kẻ đường thẳng song song với AC cắt cạnh AB tại điểm M. Tìm vị trí của D để đoạn thẳng MN có độ dài nhỏ nhất
Bài 5: (1,5 điểm). Cho a, b, c > 0 thỏa mãn: a2 + b2 + c2 = 1. Chứng minh rằng
(1)/(1-ab)+(1)/(1-bc)+(1)/(1-ca)<=9/2
Cho tứ giác ABCD. Có G là trung điểm của đoạn nối các trung điểm của hai đường chéo AC và BD. Gọi m là một đường thẳng không cắt cạnh nào hình thang ABCD; Gọi A',B',C',D',G' lần lượt là hình chiếu của A,B,C,D,G lên đường thẳng m. Chứng minh GG'=1/4 (AA' +BB' +CC' +DD')
Cho tứ giác ABCD. Có G là trung điểm của đoạn nối các trung điểm của hai đường chéo AC và BD. Gọi m là một đường thẳng không cắt cạnh nào hình thang ABCD; Gọi A',B',C',D',G' lần lượt là hình chiếu của A,B,C,D,G lên đường thẳng m. Chứng minh GG'=1/4 (AA' BB' CC' DD')
cho a,b,c,d là các số nguyên dương đôi 1 khác nhau thỏa mãn:
a/a+b + b/b+c + c/c+d + d/d+a =2. Chứng minh: rằng tích a.b.c.d là 1 số chính phương
Giải nhanh hộ mình với, thanks.