\(a,\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+...+\frac{1}{99\times100}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}=\frac{99}{100}\)
\(b,\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{2016}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{8}+...-\frac{1}{2016}\)
\(=1-\frac{1}{2016}=\frac{2015}{2016}\)
a)=(1-1/2)+(1/2-1/3)+(1/3-1/4)+......+(1/99-1/100)
=1-1/2+1/2-1/3+1/3-1/4+......+1/99-1/100
=1-1/100=99/100
b)=(1/1-1/2)+(1/2-1/4)+(1/4-1/8)....+(1/1008-1/2016)
=1-1/2+1/2-1/4+1/4-1/8+.....+1/1008-1/2016
=1-1/2016=2015/2016