Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguoi_am_phu

A = 1/10 + 1/40 + 1/88 + 1/154 + 1/238 + 1/340 

B = 3/4 . 8/9 .15/16. ... 9999/10000

Murasakibara Atsushi
16 tháng 5 2018 lúc 16:16

\(A=\frac{1}{10}+\frac{1}{40}+\frac{1}{88}+\frac{1}{154}+\frac{1}{238}+\frac{1}{340}\)

\(A=\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+\frac{1}{11.14}+\frac{1}{14.17}+\frac{1}{17.20}\)

\(3A=3.\left(\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+\frac{1}{11.14}+\frac{1}{14.17}+\frac{1}{17.20}\right)\)

\(3A=\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+\frac{3}{11.14}+\frac{3}{14.17}+\frac{3}{17.20}\)

\(3A=\frac{5-2}{2.5}+\frac{8-5}{5.8}+\frac{11-8}{8.11}+\frac{14-11}{11.14}+\frac{17-14}{14.17}+\frac{20-17}{17.20}\)

\(3A=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+\frac{1}{14}-\frac{1}{17}+\frac{1}{17}-\frac{1}{20}\)

\(3A=\frac{1}{2}-\frac{1}{20}\)

\(A=\left(\frac{1}{2}-\frac{1}{20}\right)\div3=\frac{9}{20}\div3=\frac{9}{20.3}=\frac{3}{20}\)

Vậy ................

\(B=\frac{3}{4}\cdot\frac{8}{9}\cdot\frac{15}{16}\cdot....\cdot\frac{9999}{10000}\)

\(B=\frac{1.3}{2.2}\cdot\frac{2.4}{3.3}\cdot\frac{3.5}{4.4}\cdot...\cdot\frac{99.101}{100.100}\)

\(B=\frac{\left(1\cdot2\cdot3\cdot...\cdot99\right).\left(3\cdot4\cdot5\cdot...\cdot101\right)}{\left(2\cdot3\cdot4\cdot...\cdot100\right).\left(2\cdot3\cdot4\cdot...\cdot100\right)}\)

\(B=\frac{1\cdot2\cdot3\cdot..\cdot99}{2\cdot3\cdot4\cdot..\cdot100}\cdot\frac{3\cdot4\cdot5\cdot...\cdot101}{2\cdot3\cdot4\cdot...\cdot100}\)

\(B=\frac{1}{100}\cdot\frac{101}{2}=\frac{101}{200}\)

vậy......

shunnokeshi
16 tháng 5 2018 lúc 16:55

A=1/2.5+1/5.8+1/8.11+1/11.14+1/14.17+1/17.20

A=1/3.(3/2.5+3/5.8+3/8.11+3/11.14+3/14.17+3/17.20)

A=1/3.(1/2-1/20)

=3/20

B=1.3/2.2+2.4/3.3+3.5/4.4+...+99.101/100.100

B=(1.2.3...99).(3.4.5...101)/(2.3.4...100).(2.3.4...100)

B=\(\frac{1.2....99}{2.3...100}\).\(\frac{3.4...101}{2.3...100}\)

B=1/100.101/2=101/200


Các câu hỏi tương tự
Ngô Ngọc Hải
Xem chi tiết
Cinderella
Xem chi tiết
dragom Đức
Xem chi tiết
Lê Vương Thành
Xem chi tiết
Thịnh
Xem chi tiết
An Xuân Khánh
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
Xem chi tiết
bong
Xem chi tiết
Loan Mai Thị
Xem chi tiết