8/75
cho đường tròn O đường kính AB , điểm C nằm trên đường tròn (C khác A và B) . gọi M,N lần lượt là điểm chính giữa của cung AC nhỏ và cung BC nhỏ . gọi E là giao điểm của ON và CB . từ N vẽ NK vuông góc AC ( K thuộc AC)
A/ chứng minh tứ giác ECKN là hình chữ nhật và suy ra KN là tiếp tuyến tại N của đường tròn O
B/ vẽ đường kinh ND của đường tròn O . chứng minh tứ giác KEDA là hình bình hành
C/ gọi I là giao điểm của MN và KO . chứng minh (căn 2) /NI = 1/NK + 1/NO
thankkkkkkkkkkkkkkkkkkkk
a) Vì AB là đường kính \(\Rightarrow\angle ACB=90\Rightarrow AC\bot BC\)
mà \(ON\bot BC\) (N là điểm chính giữa cung BC)
\(\Rightarrow CK\parallel EN\) mà \(NK\bot KC\Rightarrow NK\bot EN\)
\(\Rightarrow\angle KCE=\angle KNE=\angle CEN=90\Rightarrow ECKN\) là hình chữ nhật
\(\angle KNO=90\Rightarrow KN\) là tiếp tuyến
b) ECKN là hình chữ nhật \(\Rightarrow ECKN\) cũng nội tiếp
\(\Rightarrow\angle KEN=\angle KCN=\angle CNE\) \((KC\parallel NE)\)
Vì \(AC\parallel ND\) mà ACND nội tiếp \(\Rightarrow ACND\) là hình thang cân
\(\Rightarrow\angle CNE=\angle ADN\Rightarrow\angle KEN=\angle ADN\) \(\Rightarrow KE \parallel AD\)
mà \(KA\parallel ED\) \(\Rightarrow KEDA\) là hình bình hành
c) Vì \(\left\{{}\begin{matrix}MO\bot AC\\NK\bot AC\end{matrix}\right.\) \(\Rightarrow MO\parallel NK\) \(\Rightarrow\dfrac{NI}{IM}=\dfrac{NK}{MO}\Rightarrow\dfrac{NI}{NK}=\dfrac{MI}{MO}=\dfrac{MI}{R}\)
Vì M,N lần lượt là điểm chính giữa cung AC,BC \(\Rightarrow\angle MON=90\)
\(\Rightarrow MN=\sqrt{OM^2+ON^2}=\sqrt{R^2+R^2}=\sqrt{2}R\)
Ta có: \(\dfrac{NI}{NK}+\dfrac{NI}{NO}=\dfrac{MI}{R}+\dfrac{NI}{R}=\dfrac{MI+NI}{R}=\dfrac{MN}{R}=\dfrac{\sqrt{2}R}{R}=\sqrt{2}\)
\(\Rightarrow NI\left(\dfrac{1}{NK}+\dfrac{1}{NO}\right)=\sqrt{2}\Rightarrow\dfrac{\sqrt{2}}{NI}=\dfrac{1}{NK}+\dfrac{1}{NO}\)