AC=AD
OC=OD
=>AO là trung trực của CD
=>OA vuông góc CD tại I
góc AMB=1/2*180=90 độ
góc KMB+góc KIB=180 độ
=>KMBI nội tiếp
AC=AD
OC=OD
=>AO là trung trực của CD
=>OA vuông góc CD tại I
góc AMB=1/2*180=90 độ
góc KMB+góc KIB=180 độ
=>KMBI nội tiếp
Cho đường tròn (O ; R), 2 đường kính AB và CD vuông góc với nhau. Trên cung nhỏ DB, lấy điểm N (N khác B và D). Gọi M là giao điểm của CN và AB.
a. Chứng minh tứ giác ODNM nội tiếp được một đường tròn.
b. Chứng minh rằng \(AN.MB=AC.MN\)
c. Biết \(DN=R\) và AN cắt CD tại E, hãy tính ED và EC theo R.
Cho tam giác ABC nội tiếp đường tròn đường kính AB với AC < BC và đường cao CH. Trên cung nhỏ BC lấy điểm M (M khác B và C), gọi E là giao điểm của CH và AM.
1) Chứng minh tứ giác EHBM là tứ giác nội tiếp
2) Chứng minh AC2 = AH. AB và AC. EC = AE. CM
cho nửa đường tròn tâm o đường kính ab trên nửa đường tròn lấy điểm c sao cho ca <cb,vẽ ch vuông góc với ab (h thuộc ab).trên cung bc lấy điểm d bất kì (d khác b và c),gọi e là giao diểm của ch và ad.
a)chứng minh tứ giác bdhe nội tiếp đường tròn
b)chứng minh ac bình phương = ae.ad
Cho đường tròn O, đường kính AB. Trên tia AB lấy điểm C sao cho AC>AB. Dựng đường thẳng d qua C và vuông góc với AB. Trên đường trong (O) lấy điểm M (m khác A và B). Gọi H, K lần lượt là giao điểm của AM,MB với d. Gọi N là giao điểm của AK với đường tròn (O).
giúp mình với ạ :(((
8/75
cho đường tròn O đường kính AB , điểm C nằm trên đường tròn (C khác A và B) . gọi M,N lần lượt là điểm chính giữa của cung AC nhỏ và cung BC nhỏ . gọi E là giao điểm của ON và CB . từ N vẽ NK vuông góc AC ( K thuộc AC)
A/ chứng minh tứ giác ECKN là hình chữ nhật và suy ra KN là tiếp tuyến tại N của đường tròn O
B/ vẽ đường kinh ND của đường tròn O . chứng minh tứ giác KEDA là hình bình hành
C/ gọi I là giao điểm của MN và KO . chứng minh (căn 2) /NI = 1/NK + 1/NO
thankkkkkkkkkkkkkkkkkkkk
Bài 2: Cho nửa đường tròn tâm O đường kính AB = 2R. Trên cung AB lấy hai điểm C và D sao cho C thuộc cung AD (C và D không trùng A và B). Gọi I là giao điểm của AD và BC. Vẽ IH vuông góc với AB tại H.
a) Chứng minh: Tứ giác BDIH nội tiếp được đường tròn.
b) Chứng minh DA là tia phân giác của CDH .
c) Gọi K là trung điểm của BI. Chứng minh: C, H, K, D cùng thuộc một đường tròn CÓ HÌNH NỮA NHA
Cho nửa đường tròn tâm O đường kính AB. Trên nữa đường trong lấy 2 điểm C và D sao cho cung AC bé hơn cung AD(D khác B). Hai dây AD và BC cắt nhau tại M. Vẽ MN vuông góc với AB tại N
a/ Chứng minh rằng tứ giác ACMN nội tiếp được trong một đường tròn
b/ Chứng minh rằng AM.AD=AN.AB
Từ một điểm A nằm ngoài đường tròn tâm O bán kính R,kẻ các tiếp tuyến AB,AC với đường tròn (B,C là các tiếp điểm).Trên cung nhỏ Bc lấy một điểm M bất kì khác B và C.Gọi I , K , P lần lượt là hình chiếu vuông góc của điểm M trên các đoạn thẳng AB,AC,BC.
Chứng minh AIMK là tứ giác nội tiếp.
Cho đường tròn tâm O đường kính AB.Vẽ dây cung CD vuông góc với AB tại I (I nằm giữa A và O).Lấy điểm E trên cung nhỏ BC,E khác B và C,AE cắt CD tại F.
Chứng minh:
a. BEFI là tứ giác nội tiếp đường tròn.
b. AE . AF = AC^2