\(\left(7^{2003}.7^{2002}\right):\left(7^{2001}.7\right)\)
\(=\left(7^{2003}.7^{2002}\right):\left(7^{2001+1}\right)\)
\(=7^{2003}.7^{2002}:7^{2002}=7^{2003}.\left(7^{2002}:7^{2002}\right)\)
\(=7^{2003}.1=7^{2003}\)
\(\left(7^{2003}.7^{2002}\right):\left(7^{2001}.7\right)\)
\(=\left(7^{2003}.7^{2002}\right):\left(7^{2001+1}\right)\)
\(=7^{2003}.7^{2002}:7^{2002}=7^{2003}.\left(7^{2002}:7^{2002}\right)\)
\(=7^{2003}.1=7^{2003}\)
khẳng định rằng 7200+72001 chia hết cho 8
giúp mình đi rồi mình tick đúng cho
A=7+7^2+7^3+7^4+7^5+7^6+7^7+7^8+7^9+7^11
a)
b)
c)
(1+7) +(7•7+7•7•7)+...+7 •7•7•7...(101 số 7)chứng tỏ dãy trên chia hết cho 8
a/A=\(-1+7-7^2+7^3-7^4+...+7^{2008}+7^{2008}\)
b/B=\(1-7^2+7^4-7^6+7^8-7^{10}+...+7^{2008}\)
c/C=\(1-7^3+7^5-7^7+7^9-7^{11}+...+7^{2009}\)
Tính S = 7+7/3+7/6+7/10+7/15+7/21+7/28+7/36+7/45+7/55
7 . 7 . 7 . 7 . 7 . 7 . 7 . 7 . 7 . 7 . 7 . 7 . 7 . 7 . 7 = ?
= 7^?
7+7+7+7+7+7+7
7 . 7 . 7 . 7 . 7 . 7 . 7 . 7 . 7 . 7 . 7
Rút gọn thành lũy thừa
{ ai nhanh nhất mk sẽ tick cho }
7/2 + 7/4 +7/8 + 7/16 + 7/32 + 7/64 + 7/128 +7/256 + ...