\(\frac{2x}{1}=\frac{3y}{1}=\frac{-4z}{2}=\frac{2x-3y+4z}{1-1-2}=\frac{48}{-2}=-24\)
=> \(\hept{\begin{cases}2x=-24\\3y=-24\\-2z=-24\end{cases}\Rightarrow\hept{\begin{cases}x=-12\\y=-8\\z=12\end{cases}}}\)
\(2c=3y=-2zz\)
\(\Rightarrow\frac{2x}{1}=\frac{3y}{2}=\frac{-4z}{2}\)
Áp dụng tính chất của tỉ số bằng nhau ta có :
\(\frac{2x}{1}=\frac{3y}{1}=\frac{-4z}{2}=\frac{2x-3y-\left(-4z\right)}{1-1-2}=\frac{48}{-2}=-24\)
\(\Rightarrow\hept{\begin{cases}x=-12\\y=-8\\z=12\end{cases}}\)
Ta có :
\(2x=3y=-2z\)
\(=\frac{x}{\frac{1}{2}}=\frac{y}{\frac{1}{3}}=\frac{z}{-\frac{1}{2}}=\frac{2x}{\frac{1}{4}}=\frac{3y}{\frac{1}{9}}=\frac{4z}{-\frac{1}{8}}=\frac{2x-3y+4z}{\frac{1}{4}-\frac{1}{9}-\frac{1}{8}}=\frac{48}{\frac{1}{72}}=3456\)
Nên : \(2x=3456\Rightarrow x=1728\)
\(3y=3456\Rightarrow y=1152\)
\(-2z=3456\Rightarrow z=-1728\)
Vậy ....................