\(\frac{6}{1.3}+\frac{6}{3.5}+\frac{6}{5.7}+...+\frac{6}{49.51}\)
\(=3\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{49.51}\right)\)
\(=3\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{49}-\frac{1}{51}\right)\)
\(=3\left(1-\frac{1}{51}\right)\)
\(=3.\frac{50}{51}\)
Chúc bn hok tốt
\(\frac{6}{1\cdot3}+\frac{6}{3\cdot5}+\frac{6}{5\cdot7}+...+\frac{6}{49\cdot51}\)
\(=3\left(\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+...+\frac{2}{49\cdot51}\right)\)
\(=3\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{49}-\frac{1}{51}\right)\)
\(=3\left(1-\frac{1}{51}\right)\)
\(=3\cdot\frac{50}{51}\)
\(=\frac{50}{17}\)
Đặt \(A=\frac{6}{1.3}+\frac{6}{3.5}+\frac{6}{5.7}+.........+\frac{6}{49.51}\)
\(A=\frac{6}{1.3}+\frac{6}{3.5}+\frac{6}{5.7}+........+\frac{6}{49.51}\)
\(=6\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+..........+\frac{1}{49.51}\right)\)
\(=\left(6.\frac{1}{2}\right)\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+........+\frac{2}{49.51}\right)\)
\(=3\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-........-\frac{1}{51}\right)\)
\(=3\left(1-\frac{1}{51}\right)\)
\(=3\left(\frac{51}{51}-\frac{1}{51}\right)\)
\(=3.\frac{50}{51}\)
\(=\frac{150}{51}\)
Vậy \(A=\frac{150}{51}\)
\(\frac{6}{1.3}+\frac{6}{3.5}+\frac{6}{5.7}+...+\frac{6}{49.51}\)
\(=\frac{6}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{49.51}\right)\)
\(=3.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{49}-\frac{1}{51}\right)\)
\(=3.\left(1-\frac{1}{51}\right)\)
\(=3.\frac{50}{51}\)
\(=\frac{50}{17}\)
_Chúc bạn học tốt_
Rút gọn thành \(\frac{50}{17}\)nha
Mình quên chưa rút gọn