4.Chứng tỏ rằng A=(1001.n+110).(301.n+31)chia hết cho 2 với n là một số tự nhiên
1.Có hay không 2 số tự nhiên m,n để: (m+n).(m-n)=15749
1.Có hay không 2 số tự nhiên m,n để: (m+n).(m-n)=15749
2.có bao nhiêu số chia hết cho 19 nằm trong khoảng 30 đến 10000
3. Tim ab để 12a5b chia hết 2;9 và 5 dư 2
4.Chứng tỏ rằng A=(1001.n+110).(301.n+31)chia hết cho 2 với n là một số tự nhiên
a) Chứng tỏ rằng tổng 5 số tự nhiên liên tiếp thì chia hết cho 5
b) Chứng tỏ rằng ( n+2010)+(n+2011) luôn chia hết cho 2 với mọi n là số tự nhiên
Chứng tỏ rằng với mọi số tự nhiên n thì tích (n+4).(n+7) là một số chia hết cho 2
a,chứng tỏ rằng với mọi số tự nhiên n thì tích (n+3).(n+6) chia hết cho 2
b, chứng tỏ rằng với mọi số tự nhiên n thì tích n.(n+5) chia hết cho 2
1. Chứng tỏ rằng với mọi số tự nhiên n thì n2+n+1 không chia hết cho 5
2. Chứng tỏ rằng số a= 911 +1 chia hết cho cả 2 và 5
3. Chứng tỏ rằng tích n(n + 3) là số chẵn vói mọi số tự nhiên n
a, Tìm số tự nhiên n sao cho(4-n)chia hết cho (n+1)
b, Chứng tỏ rằng với mọi số tự nhiên n thì tích (n+3)×(n+6) chia hết cho 2
c, Cho a, b là hai số nguyên tố cùng nhau. Chứng minh rằng a và a+b cũng là 2 số nguyên tố cùng nhau
Cho số A = (n + 4) x (n + 7), với n là số tự nhiên. Chứng tỏ rằng A chia hết cho 2.
1.Chứng tỏ rằng với mọi số tự nhiên n thì tích ( n + 3 ) ( n + 6 ) chia hết cho 2
2.Chứng tỏ rằng với mọi số tự nhiên n thì tích n(n+5) chia hết cho 2
3. Gọi A = n2 + n + 1 . Chứng minh rằng :
a) A không chia hết cho 2
b) A không chia hết cho 5