\(\frac{4}{2\cdot5}+\frac{4}{5\cdot8}+...+\frac{4}{x\cdot\left(x+3\right)}=\frac{22}{35}\)
\(\frac{3}{2\cdot5}+\frac{3}{5\cdot8}+...+\frac{3}{x\cdot\left(x+3\right)}=\frac{33}{70}\)
\(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{x}-\frac{1}{x+3}=\frac{33}{70}\)
\(\frac{1}{2}-\frac{1}{x+3}=\frac{33}{70}\)
\(\frac{1}{x+3}=\frac{1}{35}\)
\(\Rightarrow x+3=35\)
\(\Rightarrow x=32\)
\(\frac{4}{2\cdot5}+\frac{4}{5\cdot8}+...+\frac{4}{x\left(x+3\right)}=\frac{22}{35}\)
\(\frac{3}{4}\left(\frac{4}{2\cdot5}+\frac{4}{5\cdot8}+...+\frac{4}{x\left(x+3\right)}\right)=\frac{3}{4}\cdot\frac{22}{35}\)
\(\frac{3}{2\cdot5}+\frac{3}{5\cdot8}+...+\frac{3}{x\left(x+3\right)}=\frac{33}{70}\)
\(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{x}-\frac{1}{x+3}=\frac{33}{70}\)
\(\frac{1}{2}-\frac{1}{x+3}=\frac{33}{70}\)
\(\frac{1}{x+3}=\frac{1}{35}\)
\(\Rightarrow x+3=35\)
\(\Rightarrow x=32\)
Vậy x=32
\(\frac{4}{2.5}+\frac{4}{5.8}+...+\frac{4}{x\left(x+3\right)}=\frac{22}{35}\)
\(\Rightarrow\)\(\frac{3}{4}.\left(\frac{4}{2.5}+\frac{4}{5.8}+...+\frac{4}{x\left(x+3\right)}\right)=\frac{3}{4}.\frac{22}{35}\)
\(\Rightarrow\)\(\frac{3}{2.5}+\frac{3}{5.8}+...+\frac{3}{x\left(x+3\right)}=\frac{33}{70}\)
\(\Rightarrow\)\(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{x}-\frac{1}{x+3}=\frac{33}{70}\)
\(\Rightarrow\)\(\frac{1}{2}-\frac{1}{x+3}=\frac{33}{70}\)
\(\Rightarrow\)\(\frac{1}{x+3}=\frac{1}{2}-\frac{33}{70}\)
\(\Rightarrow\)\(\frac{1}{x+3}=\frac{1}{35}\)
\(\Rightarrow\)\(x+3=35\)
\(\Rightarrow\)\(x=35-3\)
\(\Rightarrow\)\(x=32\)